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1. Algorithm for Optimizing Discriminative Il-
lumination w and Filters W

In Section 3 of the main paper, we showed that Equation
(5) is used to solve for the optimal discriminative illumina-
tion w and filters W by solving the following optimization
problem:

max
W,w

J =
Trace(Sb)

Trace(Sw)
, st. ||w|| = 1, (1)

where

Sb =

C∑
c=1

(r̄c − r̄)(r̄c − r̄)T ,

Sw =

C∑
c=1

Nc∑
i=1

(ri,c − r̄c)(ri,c − r̄c)
T .

ri,c is the texture descriptor for the i-th sample in the c-th
class:

r = WTBTFTw = WTRTw. (2)

Nc is the number of samples in the c-th class. r̄c is the
average descriptor for the c-th class, and r̄ is the average
descriptor for all classes.

In this section, we show the detailed algorithm for solv-
ing this problem. We optimize w and W in Equation (1)
alternatively. If we fix W, Equation (1) becomes

max
w

J =
Trace(wTS1w)

Trace(wTS2w)
, st. ||w|| = 1,

where

S1 =

C∑
c=1

(R̄c − R̄)WWT (R̄c − R̄)T ,

S2 =

C∑
c=1

Nc∑
i=1

(Ri,c − R̄c)WWT (Ri,c − R̄c)
T ,

where Ri,c is the corresponding matrix for the i-th sample
in the c-th class, R̄c is the average matrix for the c-th class,

and R̄ is the average matrix for all the classes. This is the
well-known Rayleigh quotient problem and can be solved
by eigenvalue decomposition in a closed form.

If we fix w, Equation (1) becomes

max
W

J =
Trace(WTS3W)

Trace(WTS4W)
,

where

S3 =

C∑
c=1

(R̄c − R̄)TwwT (R̄c − R̄),

S4 =

C∑
c=1

Nc∑
i=1

(Ri,c − R̄c)wwT (Ri,c − R̄c)
T .

We follow the method presented in [4] to solve this
trace ratio problem, which is an iterative algorithm that
guarantees global optimal solution. Let Sp = S3 and
St = S3 + S4. It is not hard to show that both Sp and
St are positive semidefinite. Assuming the singular value
decomposition of St is St = UΛUT , the above trace ratio
optimization problem becomes:

max
W

J =
Trace(WTSu

pWT )

Trace(WTSu
t WT )

, (3)

where Su
p = USpU

T and Su
t = UStU

T .
Then ITR (Iterative algorithm for the Trace Ratio opti-

mization problem):
1. Initialize W0 as an arbitrary columnly orthogonal ma-

trix;
2. If iteration number < max iteration number, do:
2.1 Compute the trace ratio λn for the projection matrix

Wn−1 estimated from the previous iteration:

λn =
Trace(WT

n−1S
u
pWn−1)

Trace(WT
n−1S

u
t Wn−1)

2.2 Construct the trace difference problem:

max
WTW=I

d = Trace(WT (Su
p − λnSu

t )W)

1



2.3 Solve the trace difference problem using eigenvalue
decomposition:

(Su
p − λnSu

t )vn
k = τnk vn

k , (4)

where τnk is the k-th largest eigenvalue of Su
p − λnSu

t cor-
responding to the eigenvector vn

k .
2.4 Set Wn = [vn

1 ,v
n
2 , . . . ,v

n
d ]. d is the desired lower

feature dimension.
2.5 Set Sv

t = Wn(Wn)TSu
t Wn(Wn)T

2.6 Perform singular value decomposition:

Sv
t = WnΛnWT

n (5)

2.7 If ||Wn −Wn−1|| <
√
m′dε, then break. ε is set to

10−4 in this work.
3. Output W = Wn.

Thus, in our algorithm, we iteratively solve the Rayleigh
quotient problem and the trace ratio problem to find optimal
w and W. In all the experiments, we found the algorithm
will converge within 3 to 5 iterations. Please refer to the
supplemental video for a video of iterative optimization.

2. The Effect of Filter Patch Size and Number
of Filters

We also did extensive simulation to evaluate the effect of
filter patch size and the number of filters learned to the BTF
classification performance.

To evaluate the effect of the filter size, we trained five
filter banks with different filter sizes to classify between
aluminum and stainless and test the performances of the-
ses filter banks. In Fig. 1, we show the trained filters and
their classification rates. On one hand, as the filter size in-
creases, the patterns of some filters changes in a way dif-
ferent from scaling for the filters with higher spatial fre-
quencies. On the other hand, the scaling on filter patterns is
obvious for the filters with lower spatial frequencies. This is
because more pixels are included in the training sets as the
filter size increases. The filters with higher frequencies are
more sensitive to the changes of training set while the filters
with lower frequencies are more stable to including more
training samples, which can be thought of adding the iden-
tical samples (the repetitive patterns in texture) plus high
frequency noise (the variance of patterns within a texture).
Also, the performance does not increase with the filter size
monotonically. This is due to two reasons. First, the tex-
ture consists of repetitive patterns. So increasing the filter
size does not necessarily include more informations about
the texture. Second, as the filter size increases, it is more
likely to include outliers, such as the specular lobes, into
the training set. In all the experiments, we set the patch size
to be 19× 19.

In addition to the filter patch size, the number of filters
to optimize is another important parameter for the proposed

filter-based BTF classification method. Figure 2 shows the
trained filter banks with different number of filters for clas-
sifying aluminum and stainless. As shown, the performance
for this task increases fast with the number of filters. This
indicate that the classification of aluminum and stainless
can be performed well on a subspace of BTF with lower di-
mensionality. This corresponds to the observation in [3] that
some texture classification tasks can be performed well even
though the sampling patch size is small (i.e., using more lo-
cal feature). Within each filter bank, the spatial frequency
of the learned filter increases with the index of filter. This
indicates that the difference of the projection of BTF is con-
centrated on the low spatial frequencies. This is reasonable
since the projection vector of BTF (optimal light pattern w)
is optimized so that the distance of within-class projections
is maximized. In all the experiments, we set the number of
filters to optimize to be 16.

3. Comparisons and visualization of different
methods

(a) Samples (all on) (b) VZ(77.64%) (c) 3D texton(99.75%)

(d) BRDF(86.58%) (e) BRDF projection + 
 Optimal filters(92.41%)

(f) Our method(99.99%)

aluminum

stainless

Figure 3: The classification for aluminum and stainless
steel samples. (a) Images of samples when all LEDs are
turned on; (b) VZ classifier[3] ; (c) 3D texton[2]; (d) BRDF
projection[1]; (e) BRDF projection coupled with optimal
filters; (f) Our method. The accuracy is shown in the
bracket.

As discussed in the paper, since the VZ classifier and
3D texton are both bag-of-words methods, we also evaluate
them with dif- ferent numbers of words. We found their per-
formance is sensitive to this parameter which makes them
less robust compared to our method. The comparisons are
shown in Table. 1. Fig. 3 shows the classification results for
some samples of aluminum and stainless steel. We found
our method has quite close performance compared to 3D
texton by using only a single coded image.



(a) 3x3 (94%)

(c) 11x11 (97%)

(b) 7x7 (96%)

(d) 19x19 (97%)

(e) 27x27 (96%)

Figure 1: The trained filter banks with different filter sizes. From top to bottom, the filter sizes are: 3 × 3, 7 × 7,11 × 11,
19× 19 and 27× 27, with the classification rate for the task aluminum vs. stainless shown to the bottom of each filter bank.
The corresponding filters, shown in the same column, are not necessarily the scaled versions of each other due to two reasons:
1) increasing the filter size does not necessarily include more informations about the texture due to the repetition of patterns.
2) As the filter size increases, it is more likely to include outliers, such as the specular lobes, into the training set.
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Figure 2: The filters in the optimal filter banks with different number of filters. Shown on the left side are the number of
filters in the filter bank and the classification rate for the task aluminum vs. stainless steel.
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Table 1: Comparison results with the VZ classifier [3], 3D Texton [2], the BRDF projection method [1] and the BRDF
projection coupled with optimal filters. The number of required images for each method is shown in the bracket. 1∗ means it
uses the subtraction of two images since light cannot be negative. For the VZ classifier and 3D Texton Method, we test with
different numbers of words (K).

Task VZ (1) [3] , K = 100 VZ (1), K = 500
3D Texton (150)[2],

K = 100
3D Texton (150),

K = 500
BRDF Projection (1∗)

[1]
BRDF projection +
Optimal filters (1∗) Our method (1∗)

Aluminum
vs.

Granite
79.12% 81.25% 100% 100% 94.03% 93.37% 98.55%

Aluminum
vs.

Stainless
84.81% 86.36% 99.40% 99.40% 86.61% 89.97% 96.12%

Aluminum
vs.

Wood
81.50% 83.55% 81.75% 83.39% 99.56% 99.99% 100%

Carpet
vs.

Wood
80.59% 79.96% 86.65% 87.28% 96.09% 95.04% 99.04%

Carpet
vs.

Paper
85.28% 83.15% 91.48% 89.37% 93.61% 99.98% 100%

Granite
vs.

Paper
86.83% 88.29% 100% 100% 97.32% 99.99% 99.74%

Paper
vs.

Wood
73.84% 73.99% 89.81% 91.20% 99.20% 100% 100%

Plastic
vs.

Stainless
78.55% 79.86% 86.97% 88.54% 99.77% 100% 100%

Paper
vs.

Aluminum
85.63% 86.90% 99.25% 99.34% 99.01% 99.08% 100%


