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Abstract

Classifying raw, unpainted materials — metal, plastic,
ceramic, fabric, etc.— is an important yet challenging task
for computer vision. Previous works measure subsets of
surface spectral reflectance as features for classification.
However, acquiring the full spectral reflectance is time-
consuming and error-prone. In this paper, we propose to
use coded illumination to directly measure discriminative
features for material classification. Optimal illumination
patterns—which we call “discriminative illumination”—
are learned from training samples, after projecting to
which, the spectral reflectance of different materials are
maximally separated. This projection is automatically re-
alized by the integration of incident light for surface re-
flection. While a single discriminative illumination is ca-
pable of linear, two-class classification, we show that mul-
tiple discriminative illuminations can be used for nonlin-
ear and multi-class classification. We also show theoreti-
cally the proposed method has higher signal-to-noise ratio
than previous methods due to light multiplexing. Finally,
we construct a LED-based multi-spectral dome and use the
discriminative illumination method for classifying a variety
of raw materials, including metal (aluminum, alloy, steel,
stainless steel, brass and copper), plastic, ceramic, fabric
and wood. Experimental results demonstrate the effective-
ness of the proposed method.

1. Introduction

Classifying materials — metal, plastic, ceramic, fabric,
paint, efc.. — has significant implications for both scien-
tific research and industrial applications across many disci-
plines, such as remote sensing [16], food inspection [25],
mineralogy, and recycling [10]. In computer vision, we
primarily focus on uncoated or unpainted raw materials
since we are limited to appearance related features, such
as color, Bidirectional Reflectance Distribution Function
(BRDF), texture, translucency, and polarization. Figure |
shows some examples of such materials.

Even for uncoated raw materials, appearance-based clas-
sification is still challenging, because appearance changes
with object shape, illumination, and viewing condition.

Fully describing the appearance of a scene requires a 14-D
function, i.e., two plenoptic functions [1]. While some pre-
vious work measures subsets of this function for material
classification [28, 13], due to the intrinsic high dimension-
ality, material classification has had limited progress com-
pared to that of object recognition.

In this paper, we focus on per-pixel classification of raw
materials based on spectral BRDFs. Instead of first sparsely
sampling subsets of this high dimensional function and then
performing classification, we propose to use coded illumi-
nation to directly measure discriminative features, i.e., pro-
jections of spectral BRDFs, for classification. The optimal
coded illumination—which we call discriminative illumi-
nation—is learned from training samples, after projecting
to which, the spectral BRDFs of different materials can be
maximally separated. The projection operation is automati-
cally realized by the integration of incident light for surface
reflection in an imaging system.

While a single discriminative illumination is capable of
linear, two-class classification, we show multiple discrimi-
native illumination patterns can be used for multi-class and
nonlinear classification. The proposed discriminative il-
lumination method is more economical than conventional
methods of using raw material measurements for classifica-
tion in terms of the number of captured images — this en-
ables the classification of materials that changes with time.
In addition, we derive that the discriminative illumination
method results in higher Signal-to-Noise Ratio (SNR) than
conventional methods thanks to light multiplexing.

We construct a LED-based multi-spectral dome light (as
shown in Figs. 2(a)(b)) and use it as a prototype to imple-
ment the proposed discriminative illumination for classify-
ing a variety of raw materials, including metal (aluminum,
alloy steel, stainless steel, cold roll and hot roll steel, brass,
and copper), ceramic, plastic, fabric and wood, as shown in
Fig. 1. Experimental results demonstrate the effectiveness
of the proposed method (see the supplementary video).

2. Related Work
Per-Pixel Material Classification in Machine Vision

There are several works aiming at per-pixel material clas-
sification using various low-level appearance features, such



Metal Plastic Fabric Ceramic Wood
Figure 1. Samples of the database of raw materials tested in this paper. We focus on unpainted, raw materials which are classified based on
their surface spectral BRDFs. The database includes metal, plastic, fabric, ceramic, and wood. Within the class of metal, we have samples
of alloy (#4130), aluminum (#5052, #6061, #2024, #7075), steel (cold roll and hot roll), stainless steel, brass, and copper. We intentionally
choose samples that have similar colors so that most samples cannot easily be classified using only color information. In total, there are
100 sample plates. The measured spatially-varying spectral BRDFs can be downloaded at www.cis.rit.edu/mcsl.
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Figure 2. Discriminative illumination for material classification. (a) and (b): we design and build a LED-based multi-spectral dome light
for classifying raw materials based on a 2D slice of their spectral BRDFs. The dome has 25 LED clusters. Each LED cluster has six color
LEDs which can be weighted individually to create a desired spectrum. We learn optimal illumination patterns from training samples, after
projecting to which the spectral BRDFs of different materials can be maximally separated. (c)(d)(e) show an example of alloy-vs-steel
classification using three methods: (c) best classification with one of the 25 x 6 = 150 LEDs, (d) classification with Fisher light, and (e)
classification with SVM light. Top: the corresponding illumination patterns. Middle: the captured images. Bottom: the classification
results, shown as binary images. As shown, the classification rate is at most 72% if we use one of the 150 LEDs. With the learned
discriminative illumination (Fisher light or SVM light), we can achieve much higher classification rates (93% or 96%). In addition, we
show in Section 4 there is also a SNR benefit of using discriminative illumination. A real-time demo is given in the supplementary video.
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as polarization for metal and plastics [29, 3], spectral re-
flectance for printed circuit board inspection [12] and near
infrared reflectance [22] for wood and textiles, and 2D slice

learns optimal weighted combinations of basis illumination
for general raw material classification, which offers much
more flexibility and SNR benefits due to light multiplexing.

of BRDF [28] for paint classification. Unlike these meth-
ods, we design imaging systems that use learned coded illu-
mination to directly measure discriminative features in cap-
tured images. Recently, Jehle et al. [13] proposed to se-
lect subsets of basis lights (i.e., rings and sectors) specifi-
cally for steel plate classification. In contrast, our method

We also extend it for multi-class and nonlinear classifica-
tions, and use both the spectral and BRDF features.

Computational Illumination Our work falls in the area
of computational illumination which uses coded light for
efficient material and shape measurement [9, 15]. However,
instead of seeking for coded light for reconstructing signals
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with high SNR, our goal is to find coded light with maxi-
mum discriminative ability. This is similar to the relation
between EigenFaces and FisherFaces [2].

Task-Specific and Feature-Specific Imaging Our work
is also related to task-specific and feature-specific imag-
ing [18, 19], in which the goal of such imaging systems
is not to capture visually appealing images but to maximize
the amount of information relevant to given tasks (in our
case, material classification). An essential component in
our work is the supervised learning from labeled data sets.

3. Discriminative Illumination: A Physically-
based Classifier of Spectral BRDF

For a point on an opaque, unpainted surface, its material
property can often be described with a spectral BRDF [20],
f(wi,wo, A), which is a 5-D function describing the ratio
between the incident light in the direction w; and the re-
flected light in the direction w, at the wavelength A. Al-
though in principle f(w;,w,, A) itself can be used as a fea-
ture for material classification, measuring this 5-D function
is time-consuming and error-prone (especially at grazing
angles) and thus directly using it for classification is im-
practical. As mentioned earlier, subsets of spectral BRDF
have been used for material classification [28, 13].

3.1. Two-Class Classification

Our approach is to design imaging systems that directly
measure discriminative features from spectral BRDFs for
classification. Consider a canonical problem of a two-class
material classification with a linear classifier,
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where x = [f(w;,w,, A)] is a vector of the spectral BRDF
of a point, and the projection vector w and the threshold b
consist of the linear classifier. The key operation here is the
projection of the spectral BRDF x to the direction w.

Instead of measuring the full spectral BRDF and then
performing the projection, we can use coded illumination to
directly measure the projection from reflected light. Con-
sider illuminating the sample with multiple light sources
from different angles with different spectra as shown in
Fig. 2(a), the measured reflected light, I (w,), is

Iw,)= / f(wi,wo,A) L(w; ,AN)max(0,cos 6;)S (N dw;dA,
A,w;
2

where L(w;, A) is the incident light in the direction w; at
the wavelength A, f(w;,w,, ) is the spectral BRDF of the
sample, S()\) is the spectral sensitivity of the camera, and
max(0, cos 6;) is the visibility term.
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Figure 3. Discriminative illumination as a physically-based linear
classifier. (a) A schematic diagram in which coded illumination
acts as a linear classifier, after projecting to which the spectral
BRDFs of different materials are maximally separated. (b) An ex-
ample of aluminum-vs-alloy classification. The image is captured
by one of the 150 LEDs of the dome which yields the best clas-
sification performance on training data. Its classification rate on
testing data is 41%. (c) We train a linear kernel SVM classifier
from the same training data, with the classification rate of 95% on
the testing data. The bar graph shows the learned SVM light, w,
where the 25 bar groups correspond to the 25 LED clusters and the
six bars within each group correspond to the six LEDs. The verti-
cal axis shows the relative brightness of each LED. Since the SVM
light, w, has negative values, we implement it as the difference of
two nonnegative vectors, w = w — w . (d) and (e) show the
corresponding light patterns of w and w ™ on the top view of the
LED dome. The colors of the nodes show the spectra of the LED
clusters. (f) and (g) show the corresponding captured images. (h)
shows the difference of (f) and (g), which is used for classification.
(1) is the classification result, shown as a binary image.

Equation (2) shows that for a given viewing direction
(i.e., fixed w,), a given camera (i.e., fixed S())), and a flat
sample, the measured reflected light I (w, ) is a dot product
between the spectral BRDF, f(w;,w,, A), and the incident
light, L(w;, A). More explicitly, if we define f (Wiy wo, A) =
f(wi, wo, A)S(A) max(0, cos 6;) as the spectral BRDF fea-
ture vector for the given viewing direction and the given



camera, we have
I(w,) = wlx, 3)
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where x = [f(w;, wo, A)], and w = [L(w;, \)]. Thus, I(w,)
directly measures the projection of spectral BRDF. This im-
plies that we can learn the optimal projection vector w from
training samples for classification, and implement the pro-
jection to w using coded illumination.

Figure 3(a) shows a schematic diagram of this idea,
where the spectral BRDFs of samples are shown as points
while the discriminative illumination w is shown as a line,
after projected to which samples from different classes are
maximally separated. The discriminative illumination w
can be obtained by maximizing the discrimination of ma-
terials based on a variety of metrics, such as Fisher’s Lin-
ear Discriminant Analysis (LDA) and the Support Vec-
tor Machine (SVM) with a linear kernel [5, 4]. Since w
may have negative values, we implement it as the differ-
ence of two nonnegative vectors,!, w = wT — w—, where
wt = max(0,w),and w~ = —min(0, w).

Figure 3 shows an example of aluminum-vs-alloy clas-
sification. As shown in Fig. 3(b), these two types of metal
have very similar color. If we only select two raw mea-
surements from the 150 measurements for classification, the
classification rate (on testing samples) is only 41%. Fig-
ure 3(c) shows the learned discriminative illumination w
using a linear kernel SVM — which we call SVM light.
The vector w is shown as 25 vertical bar groups. Each
group has six bars corresponding to the brightness of the
six LEDs within a LED cluster. Figures 3(d) and (e) show
the two nonnegative light patterns, w+ and w™, on the top
view of the LED dome. The colors and the brightness of
the nodes show the mixed spectra of the LED clusters. As
shown, wt has mainly blue and white colors, while w—
has mainly red and orange colors. w™ has stronger incident
light from grazing angles, while w~ has stronger incident
light from nearly the center of the dome. Figures 3(f) and
(g) are the corresponding captured images, and Fig. 3(h)
is the difference image of (f) and (g). Figure 3(i) shows
the classification result. Using the same number of mea-
surements, SVM light yields much higher classification rate
(95%) than using raw measurement for classification (41%).

Figure 2 shows another example of alloy-vs-steel classi-
fication. In addition to SVM , we also train discriminative
illumination using Fisher LDA. As shown, both the Fisher
light and SVM light have higher performance (93% and
96%) than using raw measurement for classification (72%).

3.2. Multi-Class Classification

Multiple discriminative illumination patterns can be used
for multi-class classification, as shown in Fig. 4(a). There
are two common schemes to generalize binary classifiers for

! An alternative is to impose a nonnegative constraint on w during op-
timization, with a potential decrease in its discriminative ability.
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under SVM Light SVM Light (94%) Raw Measurement (62%)
Figure 4. (a) Multiple discriminative illuminations can be used for
multi-class classification tasks. We show an example of fabric-vs-
ceramic-vs-plastic classification using the one-vs-all strategy. (b)
the captured image under one of the 150 LEDs. (c) The learned
three SVM light vectors. (d) To handle negative values, we imple-
ment the three SVM lights as four nonnegative light patterns. (e)
shows one of the four captured images under the SVM lights. (f)
the classification result. The classification rate is 94%. (g) In com-
parison, if we only select three LEDs for classification, we can at
most have 62% classification rate.

multi-class tasks: one-vs-all, which has N binary classifiers
for N classes, and one-vs-one, which needs N(N — 1)/2
binary classifiers for NV classes.

Figure 4 shows an example of three-class classifica-
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Figure 5. From linear to nonlinear classifier using multiple dis-
criminative illuminations. (a) A cascade classifier for the detec-
tion problem, which minimizes false positive rate by adding more
stages while maintaining a small given false negative rate for each
stage. (b) A toy nonlinear example of detecting red + from blue
circles. (c) Classification results of the cascade classifier in which
each stage is a linear classifier. Top: the classification results on
the training samples. Bottom: the classification boundaries.

tion, fabric-vs-ceramic-vs-plastic. Samples from these three
classes have similar colors, as shown in Figure 4(a). If we
select four raw measurements from the 150 measured im-
ages for classification, the best classification rate is 62%,
as shown in Fig. 4(g). To use discriminative illumination
for this task, we implement the one-vs-all method, and
thus train three discriminative illuminations with linear ker-
nel SVM classifiers, wi, wa, W3, as shown in Fig. 4(c).
Since these three discriminative illuminations have nega-
tive values, we implement them as four nonnegative illumi-
nation patterns, w~ = — min(0, wy, wy, W3), and WZ_ =
wi —w, k= 1,23, as shown in Fig. 4(d). Figure 4(e)
shows one of the four captured images under discriminative
illumination, and Fig. 4(f) shows the classification result.
With the same number of measurements, we achieve 94%
classification rate with discriminative illumination.

3.3. Cascade Classifier: From Linear to Nonlinear

Multiple discriminative illumination patterns can also be
constructed as an ensemble classifier for nonlinear classifi-
cation [21, 6, 7], such as boosting, bagging, random sub-
space, and cascade classification.

In this section we focus on training a cascade classi-
fier to solve the detection problem (i.e., one-class classifi-
cation) [14] where the goal is to distinguish one class of
samples from all other possible samples. Often the num-
ber of samples of the positive class (i.e., the target class) is

——a0]

much smaller than that of the negative class (i.e., all non-
target classes). As shown in [27], subsets of negative sam-
ples and all positive samples are used to train a classifier for
each stage of a cascade classifier. We adjust the threshold
of each stage to meet a given false negative rate while mini-
mizing the overall false positive rate, as shown in Fig. 5(a).
Figure 5(b) shows a toy example of detecting red + (tar-
get class) from blue circles. As shown in Fig. 5(c), for this
nonlinear classification task, a four-stage cascade classifier
(where each stage is linear classification) is sufficient.

We use the following method to train a cascade classifier:

e Input: positive sample set P+, negative sample set
P, false negative rate ¢ .

e Step 0: Initially set all negative samples as mis-
classified: Q— = P~.

e Step 1: Randomly select a subset of mis-classified
negative samples P~ from ()~ and make sure
size(P~) = min(size(PT), size(Q™)).

e Step 2: Train a classifier based on P* and P, and

adjust the threshold so that the false negative rate of
this stage e~ < ¢ .

o Step 3: Classify all negative samples in P~ using the
classifiers of the current and all previous stages. Add
all mis-classified negative samples to @~

e Step 4: If the maximum stages have been trained, or
Q™ is empty, break and finish the training. Otherwise,
go back to Step 1.

For material classification, we choose the task of detect-
ing aluminum as an example and perform classification be-
tween aluminum and three other materials (steel, ceramic,
and plastic), as shown in Fig. 6. This task has practical
implications in recycling since efficiently finding and recy-
cling scrap aluminum from all other waste materials pro-
duces significant cost savings over the production of new
aluminum [24, 1 1]. As shown in Fig. 6, we train a four-stage
cascade classifier. Figure 6(a) shows one of the raw mea-
surements (under LED #137). Figures 6(b)(c)(d)(e) show
the corresponding SVM light w (shown as a bar graph), the
classification result (shown as a binary image), and the false
negative rate and false positive rate for each stage. With four
stages of discriminative illumination, we can achieve 4.2%
false negative rate and 0.07% false positive rate. In com-
parison, if we use only a single discriminative illumination
(i.e., a linear classifier), with the same false negative rate
(4.2%), the false positive rate will be 6%.

4. Signal-to-Noise Ratio Analysis

We believe the discriminative illumination has SNR ben-
efits due to light multiplexing [23, 26]. We perform SNR
analysis of the discriminative illumination method for ma-
terial classification. We show that compared to using raw
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Figure 6. Aluminum detection using a cascade classifier. We train a four-stage cascade classifier to detect aluminum from three other
materials (i.e., steel, ceramic, plastic). (a) captured image under one of the 150 LEDs. (b)(c)(d)(e) show the learned classifier and
corresponding classification result (as a binary image) for each stage. A linear-kernel SVM classifier is used for each stage. With the false
negative rate for each stage to be 2%, the four-stage cascade classifier has false negative rate of 4.2% and false positive rate of 0.07%. In
comparison, if we train a single linear light for this problem with the same false negative rate, the false positive rate is 6%.

measurements of spectral BRDF for classification, discrim-
inative illumination not only reduces the number of mea-
surements, but also have SNR benefits in the presence of
either read noise or photon noise or both. More explicitly,
suppose we have M raw measurements of spectral BRDF,
when read noise dominates, the SNR gain of discriminative
illumination is between /M /2 and M/ v/2; when photon
noise dominates, the SNR gain is between 1 and VM. De-
tailed derivations are given in the supplementary document.

5. Experimental Results

As shown in Figs. 2(a)(b), we construct a LED-based
multi-spectral dome for material classification. The hemi-
spherical geodesic dome is 1 meter in diameter with 70
nodes, 25 of which are mounted with LED clusters. Each
LED cluster has six color LEDs — blue, green, amber,
white, red, and orange — plus a white LED in the center, as
shown in Fig. 7(a). The six colors are chosen to cover the
visible spectrum. UV and near infra-red LEDs can also be
used for certain material classification tasks. A thin diffuser
is used to uniformly mix the colors within a LED cluster.
Each LED cluster is controlled by an Arduino Duemilanove
(with ATmega328) board that can provide six 8-bit PWM
outputs. At the center of the dome, we have a Lumenera
Lul165 monochromatic CCD camera. Figure 7(b) shows a
top view of the dome, with labels of the 25 LED clusters.
Both the LEDs and the camera have been geometrically and
radiometrically calibrated beforehand. We also perform flat
fielding to ensure the uniformity of incident illumination on
the sample mounted at the center of the dome.

We use the multi-spectral dome as a prototype to imple-
ment discriminative illumination for classifying a variety of
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Figure 7. Details of the multi-spectral dome light. (a) We choose

the spectra of the six LEDs within each cluster to cover the visible
spectrum. (b) The 25 LED clusters on the top-view of the dome.

raw, unpainted materials. As shown in Fig. 1, we collect
a database of five material classes: metal, plastic, ceramic,
fabric, and wood. For metal, we also have six sub-classes:
alloy (#4130 steel), aluminum, steel (hot roll and cold roll),
stainless steel, brass, and copper. In total, there are 100 sam-
ples. Each sample is a nearly flat plate of size 4 x 4 inches.
We use the dome and measure the spatially-varying spectral
BRDF data (i.e., 150 images) for each sample plate. This
database is available at www.cis.rit.edu/mcsl.

We first run a series of simulations in order to under-
stand (1) the relative contributions of the spectral and the
angular information of reflectance for material classifica-
tion, and (2) the optimal numbers of LED primaries and
LED clusters. Detailed results are referred to the supple-
mental document. Our conclusions are (1) both the spectral
and angular information are important (and indeed comple-
mentary), and (2) the six LED primaries and 25 clusters are
sufficient for classifying the raw materials in our database.

(b) LED Clusters (Top View)
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Table 1. Comparison of classification rates for several raw material
classification tasks. In each cell, the top is the classification rate of
the training data, and the bottom is that of the testing data.

Task Fisher SVM Raw
as Light Light Measurement
Aluminum_v 0.932 0.979 0.714
_Steel 0.899 0.973 0.582
Brass_v 0.986 0.991 0.712
_Copper 0.985 0.990 0.712
Ceramic_v 0.945 0.956 0.674
_Plastic 0.944 0.955 0.678
Aluminum_v
_Alloy_v 0.764 0.813 0.452
_Stainless_v 0.746 0.823 0.430
_Steel
Fabric_v
_Cermaic_v 0.913 0.947 0.522
_Plastic_v 0.923 0.942 0.525
_Wood
Brass_v
_Fabric_v
Cermaic v 0.885 0.926 0.474
Plastic_v 0.891 0.924 0.482
_Wood

We randomly choose half of the sample plates from each
material category as the training data, and use the other
half as the testing data. As shown earlier, Fig. 2, Fig. 3,
Fig. 4, and Fig. 6 show the classification results for several
tasks. Table | summarizes classification rates for several
other tasks. We evaluate a variety of linear classifiers and
find in general Fisher light (i.e., LDA) and SVM light (i.e.,
SVM with a linear kernel) have better performance. For
comparison, we also show the classification results of using
the same number of raw measurements. For example, for
a three-class classification tasks, the discriminative illumi-
nation method (i.e., Fisher light and SVM light) needs four
images, and for using raw measurements we select the best
four from the 150 images for classification. The experimen-
tal results show that the discriminative illumination method
in general has higher performance.

We also try discriminative illumination for a challenging
but desirable task for recycling aluminum scrap — classi-
fying aluminum by alloy family. Depending on the alloy-
ing elements, aluminum alloys include 2000 series (alloyed
with copper), 5000 series (alloyed with magnesium), 6000
series (alloyed with magnesium and silicon), 7000 series
(alloyed with zinc), efc.. Current approaches are mainly
based on laser-induced breakdown spectroscopy [8], which
is expensive. Here, we use the discriminative illumina-
tion to classify four types of aluminum alloys, i.e., #2024,
#5052, #6061, and #7075. As shown in Fig. 8, for this chal-
lenging task, the discriminative illumination yields reason-
ably good results (for Fisher light, 71% accuracy and for
SVM light, 73% accuracy). In comparison, using raw mea-
surements we can only achieve 37% classification rate. This
example shows the effectiveness of the proposed method for
raw material classification.

6. Limitations and Conclusion

We propose a novel approach of using coded illumina-
tion for classifying raw materials based on projections of
spectral BRDFs. Optimal illumination patterns are learned
from training samples, which directly measure discrimina-
tive features for classification. This approach is more effi-
cient than using raw measurements and also has high SNR
due to illumination multiplexing. We construct a LED-
based multi-spectral dome as a prototype to implement this
approach for classifying a variety of raw materials. We
show even for some challenging tasks, the discriminative
illumination approach can achieve high classification rates.

There are several limitations in our current approach that
we plan to address in our future work.

Surface Normal So far, we assume flat samples. To apply
discriminative illumination for samples with unknown sur-
face normals, one possible solution is to augment the train-
ing data set with variants of spectral BRDF feature vectors
by tilting flat sample plates at different angles. More details
can be found in the supplementary material.

Texture In addition to color and BRDF, another important
appearance feature is texture. In this work we focus on per-
pixel material classification and use only spectral BRDFs.
In the future, we plan to look into texture features for mate-
rial classification.

Inter-reflection and Subsurface Scattering Global illu-
mination such as inter-reflection and subsurface scattering
can be separated from direct illumination by modulating
the discriminative light patterns with high frequency pat-
terns [17]. These global components capture surface rough-
ness (in the case of inter-reflection) and translucency (in the
case of subsurface scattering), and can also be used as addi-
tional features for material classification.

Going Beyond the Outer Layer of Materials Using sur-
face spectral BRDFs, we can only classify raw, unpainted
materials. For painted or coated materials, we need to ex-
tract features that goes beyond the outer layer, e.g., by us-
ing X-rays, or rely on other sensory inputs such as sound,
density, hardness, smell, etc.. Nevertheless, the proposed
methodology of finding optimal projection vectors via train-
ing while implementing the projection with computational
illumination or imaging may still apply.
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