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† Rochester Institute of Technology, ‡Ecole Polytechnique Fédérale de Lausanne

Abstract

Camera spectral sensitivity functions relate scene radi-

ance with captured RGB triplets. They are important for

many computer vision tasks that use color information, such

as multispectral imaging, color rendering, and color con-

stancy. In this paper, we aim to explore the space of spectral

sensitivity functions for digital color cameras. After collect-

ing a database of 28 cameras covering a variety of types,

we find this space convex and two-dimensional. Based on

this statistical model, we propose two methods to recover

camera spectral sensitivities using regular reflective color

targets (e.g., color checker) from a single image with and

without knowing the illumination. We show the proposed

model is more accurate and robust for estimating camera

spectral sensitivities than other basis functions. We also

show two applications for the recovery of camera spectral

sensitivities — simulation of color rendering for cameras

and computational color constancy.

1. Introduction

Camera spectral sensitivities are functions of wavelength
describing the relative efficiency of light detection for color
filters and image sensors. It relates scene radiance with
recorded RGB values for a digital color camera. The knowl-
edge of camera spectral sensitivities is important for many
computer vision tasks that use color information, such as
multispectral imaging [22, 17], color constancy [24, 3], and
spectral reflectance recovery [13, 5].

Camera spectral sensitivities are often measured with
a monochromator that generates narrow-band light and a
spectrophotometer that measures its spectral power distri-
bution [15]. This method, however, is applicable only in
a laboratory setting, with a time-consuming scanning over
the wavelength range of interest. Recent approaches sim-
plify the recovery of camera spectral sensitivities by us-
ing specialized targets such as a fluorescent checker [6],
a LED-based emissive chart [1], or multiple instead of a
single picture of a color target [23]. Nevertheless, it is as-
sumed [1, 7, 8, 19] that camera spectral sensitivities cannot
be reliably recovered by using regular broadband reflective
color targets (e.g., color checker) even with known illumi-

nation. The reason is that real-world spectral reflectance
has a lower intrinsic dimensionality than the number of un-
knowns of camera spectral sensitivities. The requirement of
specialized devices or targets has become a hurdle for the
estimation of camera spectral sensitivities, because com-
pared to fluorescent or LED-based color targets, reflective
color targets are still much more stable and easier to manu-
facture, maintain, and use.

On the other hand, for most digital color cameras, spec-
tral sensitivity functions are designed with certain con-
straints in mind, which means they may reside in some low
dimensional space. For instance, most digital color cameras
are designed to make ’nice’ pictures and the characteristics
of the camera spectral sensitivities are a trade-off between
maximizing quantum efficiency and minimizing noise.

Motivated by these observations, in this paper, we ask the
question: what is the space of spectral sensitivity functions

for digital color cameras? Finding a low-dimensional, sta-
tistical model for camera spectral sensitivities is useful for
estimating them with fewer constraints. With this goal, our
contributions in this paper are as follows:

• We have measured a database of spectral sensitiv-
ity functions for 28 cameras, including professional
DSLRs, point-and-shoot, industrial and mobile cam-
eras, as shown in Fig. 1. To our knowledge, this is
the most extensive database of this kind so far. The
database and source codes are available at http:
//www.cis.rit.edu/jwgu.

• We perform principal component analysis (PCA) on
this database and find that the space of camera spectral
sensitivities is two dimensional.

• Using this PCA-based model, we propose two methods
that estimate camera spectral sensitivities from a single
image of the commonly used reflective color checker,
for both known and unknown illumination.

• We also show several applications in color rendering
after we estimate camera spectral sensitivities.

2. Related Work

Estimation of Camera Spectral Sensitivity Cam-
era spectral sensitivities are usually measured using a
monochromator and a spectrometer [15, 14], with a time-
consuming scanning over the wavelength range of interest.
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Figure 1. The normalized spectral sensitivities of the 28 cameras in our database, including professional DSLRs, point-and-shoot, industrial
and mobile cameras. Statistical analysis of these measurements shows the space of camera spectral sensitivities is two-dimensional. This
statistical model is useful to recover camera spectral sensitivities from a single image with regular broadband reflective color targets.
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Figure 2. The need for statistics prior when estimating the camera
spectral sensitivities. Direct inversion by Eq. (2) suffers even with
a small amount of noise (1%) due to the low dimensionality of
spectral reflectance of real-world objects. The subscripts m and e
stand for the measured and estimated camera spectral sensitivities.

This method is accurate but expensive. Hardeberg et al. [7]
proposed to estimate the camera spectral sensitivities with
known illumination and scene reflectance, but they found it
unreliable due to the low intrinsic dimensionality of scene
spectral reflectance [9, 7]. To overcome this, Urban et al.
[23] took multiple pictures of a color target under differ-
ent LED illuminations. Dicarlo et al. [1] proposed to use a
LED-based emissive target, and recently Han et al. [6] pro-
posed to use a fluorescent color target.

Statistical Analysis of Camera Response Functions

Our work is inspired by [4] that performed statistical analy-
sis of camera radiometric response functions. Similar anal-
ysis has been performed for the spectra of daylight [10, 21]
and used for illumination and spectral reflectance recov-

ery [16]. For camera spectral sensitivity functions, Zhao
et al. [26] collected data for 12 cameras and compared four
types of basis functions to model camera spectral sensitiv-
ities. They found the radial basis function optimal for re-
covering camera spectral sensitivities. In comparison, with
more data, we find the PCA-based model more accurate.
We also propose to recover spectral sensitivities from a sin-
gle image under unknown illumination.

3. The Space of Camera Spectral Sensitivity

3.1. Statistical Analysis of Spectral Sensitivity Func-

tions for Digital Color Cameras

We first introduce some background and show why it is
necessary for statistical analysis of camera spectral sensitiv-
ities. The RGB triplet pixel intensities at one spatial posi-
tion x, Ik,x, k = R,G,B, can be modeled as the product
of the spectral reflectance of the point Rx(λ), the spectral
power distribution of the illuminant L(λ), and the camera
spectral sensitivities Ck(λ), k = R,G,B, integrating over
the visible spectral range from 400nm to 720 nm,

Ik,x =

� 720nm

400nm
Ck(λ)L(λ)Rx(λ) dλ, k = R,G,B. (1)

These equations can also be written in a matrix form, ik =
ckLR, k = R,G,B, where ik is a 1 × m vector (m is
the number of pixels), ck is a 1 × 33 vector (assuming we
have 33 bands from 400nm to 720nm with an interval of
10nm), L = diag(L(400nm), · · · , L(720nm)), and R =
[r1, · · · , rm], (rm = [Rm(400nm), · · · , Rm(720nm)]T ).

To estimate camera spectral sensitivities C =
[cR, cG, cB]

T , (T is the transpose of the matrix), in the-
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ory we can take a picture of color patches with known
reflectance, R, under a known illuminant, and solve with
pseudo-inverse

ck = ik · (LR)+, k = R,G,B. (2)

In practice, however, as shown in Fig. 2, direct inversion
cannot reliably recover camera spectral sensitivities. Even
when we use 1269 Munsell color chips as the color target,
direct inversion is still quite sensitive to noise. As pointed
out in [9, 7], this is because spectral reflectance of real-
world objects has a low intrinsic dimensionality (i.e., 6 or
8) [12, 18] which makes R rank deficient. To overcome
the problem, recent work [1, 6] used either narrow-band
LED illumination or fluorescent color targets. Nevertheless,
it is highly desirable to solve this problem with reflective
color targets, because they are easier to manufacture, main-
tain, and use. We show below that with statistical analysis
of camera spectral sensitivity functions, we can find a low
dimensional model of spectral sensitivities and solve this
problem from a single image under unknown illumination.

3.2. Assumptions and Constraints for Camera Spec-

tral Sensitivity Functions

In this paper, we are interested in the spectral sensitivity
functions of digital color cameras in the visible spectrum
(i.e., 400nm to 720nm). To unify our discussion, we make
the assumptions and constraints listed below.

• We assume the spectral sensitivity functions of a cam-
era is spatially invariant, i.e., they are functions of
wavelength only: Ck(λ), k = R,G,B.

• We also assume the spectral sensitivity functions are
non-negative,

Ck(λ) ≥ 0, k = R,G,B. (3)
In addition, we normalize the spectral sensitivity func-
tion of each color channel to be between zero and one,

max
λ

Ck,n(λ) = 1, k = R,G,B, (4)

where ck,n is the normalized spectral sensitivity, and
ck = gk · ck,n, gk ≥ 0, k = R,G,B. 1 The absolute
magnitudes of spectral sensitivities can be accounted
by gain of an imaging system and thus can be excluded
for modeling spectral sensitivities. Note that our nor-
malization is different from previous work [6, 26]
where only the peak of CG(λ) is normalized to one.
We normalize such that the peak of all RGB chan-
nels to one, because we aim to use statistical models
to explain the spread rather than the height variation of
spectral sensitivity functions.

1After normalization, Eq. 1 becomes Ik,x =
� 720nm
400nm gk ·

Ck,n(λ)L(λ)Rx(λ) dλ, k = R,G,B. where gk is the constant for
the red, green or blue channel, and Ck,n(λ) is the normalized spectral
sensitivity. The matrix form of Eq. 1 becomes ik = gkck,nLR, k=R, G,
B, where ck,n = [Ck,n(400nm), · · · , Ck,n(720nm)].

• To faithfully capture the color of a scene, in theory,
cameras need to satisfy the Luther condition [15], i.e.,
the camera spectral sensitivity functions need to be a
linear transformation of the CIE-1931 2-degree color
matching functions:




x̄
ȳ
z̄



 = T




cR
cG
cB



 , (5)

where [x̄, ȳ, z̄]T is the CIE-1931 2-degree color
matching function, [cR, cG, cB]

T are the spectral sen-
sitivities of a digital color camera, and T is a full-rank
3 × 3 matrix to be determined. In practice, however,
due to limitations in hardware (e.g., color filters in the
Bayer pattern), the Luther condition is often satisfied
to a certain degree, especially for low-end consumer-
grade cameras.

Equations (3), (4), and (5) define the space of spectral
sensitivity functions of digital color cameras. It is easy to
see this space is a convex set. If C1 and C2 are in this
set, any convex combination aC1 + (1− a)C2, 0 ≤ a ≤ 1
must also be in this set. Below, we measured spectral sensi-
tivity functions for a wide range of cameras and performed
statistical analysis to chart the space.

3.3. Database of Camera Spectral Sensitivity

We have measured the spectral sensitivity functions for
28 cameras using a monochromator and a spectrometer
PR655. The measurement setup and details can be found
in the supplementary materials.

The raw measured data, after normalization, is in Fig. 1.
Most spectral sensitivity functions peak at similar wave-
length for each channel. To validate whether they satisfy
the Luther condition, we estimate the matrix T with least
square based on Eq. (5). The spectral Root Mean Square
(RMS) error, ||C2deg − T ·C||, is used for evaluation,
where C2deg is a matrix of the CIE-1931 2-degree color
matching function, and C are the measured camera spectral
sensitivities. Color difference (CIEDE00 [11]) is also cal-
culated between C2deg and T ·C under CIE D65 illumi-
nant for the 1269 Munsell color chips [18]. Ideally, both the
spectral RMS and color difference are zero if a camera per-
fectly satisfies Luther condition. As shown in Fig. 3, how-
ever, overall most cameras have a deviation from the Luther
condition, especially for the two industrial cameras. It also
shows that Canon cameras in general have lower RMS and
color differences than Nikon cameras in this aspect.

3.4. A PCA Model for Camera Spectral Sensitivity

We performed Principal Component Analysis (PCA) on
the normalized data for each color channel separately. In
our database, we have 9 Canon and 10 Nikon cameras, and
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Figure 3. A camera satisfies the Luther condition if its spectral sensitivity function is a linear transformation of the CIE-1931 2-degree
color matching function. The Luther condition can be evaluated by the RMS error between C2deg and T ·C, where T is computed by
Eq. (5), C2deg are the CIE-1931 2-degree color matching functions, and C are the measured camera spectral sensitivities. Color difference
(CIEDE00 [11]) is calculated between C2deg and T ·C under CIE D65 illuminant and the 1269 Munsell color chips [18]. Ideally, spectral
RMS and color differences are zero if a camera perfectly satisfies the Luther condition. Overall, most cameras have a deviation from the
Luther condition, especially for the two industrial cameras.

9 other cameras. PCA was performed on all Canon cam-
eras, all Nikon cameras, and all 28 cameras to investigate
the difference across different types of cameras. The re-
sults are shown in Fig. 4. When all 28 cameras are used, the
1st principal component explains over 95% of total variance
of the data, and the first two principal components explain
over 97%, which means camera spectral sensitivities can be
modeled as a two-dimensional space with reasonably high
accuracy (which is also confirmed by our recovered results
and applications). In other words, camera spectral sensitiv-
ities can be decomposed as ck,n = σk ·Ek, k = R,G,B,
where σ = [σ1,σ2] is a 1× 2 vector, Ek = [ek,1, ek,2]T is
2× 33, the eigenvector matrix. The matrix form of Eq. 1 is

ik = gkσkEkLR, k = R,G,B, (6)

where Ek, k = R,G,B is shown in Fig. 4, and the scatter
plot of σ of the 28 cameras is shown in Fig. 5.

4. Spectral Sensitivity from a Single Image

We show the PCA model enables the recovery of camera
spectral sensitivities with commonly used reflective color
targets from a single image.
4.1. with a Known Light Source

If the spectrum of a light source is known, we can cap-
ture an image of a reflective color target (e.g., color checker)
and recover camera spectral sensitivities by gkσk =
ik(EkLR)+, k = R,G,B. The camera spectral sensitivi-
ties can be obtained by

ck = gkck,n = gkσkEk = ik(EkLR)+Ek, k = R,G,B.
(7)

4.2. with an Unknown Light Source

If the spectrum of a light is unknown but we know it is
daylight, we show both the spectrum of daylight and the

camera spectral sensitivities can be recovered, by using the
daylight spectrum model [10]. This daylight model is rep-
resented as L(λ, t) = L̄(λ) +M1(t)V1(λ) +M2(t)V2(λ),
where M1 and M2 are functions of correlated color tem-
perature (t), L̄(λ) is the average daylight spectrum, and
V1(λ) and V2(λ) are the characteristic vectors of day-
light. In matrix form, the daylight model can be expressed
as l(t) = l̄ + M1(t)v1 + M2(t)v2 Thus, Eq. (7) be-
comes Ck = ik(Ekl(t)R)+Ek, k = R,G,B. Both
σ and t are optimized iteratively to minimize the RMS
||ik − gkσkEkl(t)R||, k = R,G,B.

Figure 6 shows an example where we use both methods
to recover the spectral sensitivities of a Canon 60D camera.
Figure 6(d) shows the result when the spectrum of daylight
is known. Figures 6(e) and (f) show that without know-
ing the daylight, we can recover both the unknown daylight
spectrum and the camera spectral sensitivities. The recov-
ery of spectral sensitivities of more cameras can be found in
the supplementary materials. We also evaluated this method
under daylight at different time of the day in the supplemen-
tary material, which confirms the method stable.
4.3. Comparison with Other Basis Functions

We also compare this PCA model with three other ba-
sis functions for modeling camera spectral sensitivities [26],
including Fourier, radial, and polynomial basis. Details of
these basis functions are in the supplementary material.

Using the same captured image (Fig. 6(c)), we recover
camera spectral sensitivities with the four types of basis
functions, respectively. As shown in Fig. 7, the results are
not as accurate as that by using the PCA model (Fig. 6(f)).
We also use the recovered camera spectral sensitivities to
simulate the rendering of a color checker under D65 illu-
minant. In Fig. 8, the PCA model outperforms other basis
functions, resulting in the smallest color difference overall.

4324



  

  

  











Figure 4. The principal components of camera spectral sensitivities. Top Row: 1st principal component. Bottom Row: 2nd principal
component. The three columns represent the R/G/B channels, respectively. We performed PCA on Canon cameras, Nikon cameras, and
all 28 cameras. The 1st principal component accounts for over 95% of total variance for all three channels, and the first two principal
components accounts for over 97% of total variance. Thus, we model camera spectral sensitivity functions as two-dimensional functions.

  





Figure 5. The scatter plot of the 28 cameras in the two-dimensional space, for the red (a), green (b) and blue (c) channel. The red circles
are Canon cameras, the green diamonds are Nikon cameras, and the blue triangles are the other cameras in the database.

We also evaluate the robustness to noise when recov-
ering camera spectral sensitivities with the four types of
basis functions over the entire database (i.e., 28 cameras).
The proposed PCA model is more robust to noise, with the
smallest RMS error in the recovery in Table 1, contradict-
ing with that in [26]. We believe the reason is that our PCA
model is derived with more data (i.e., 28 vs 12 cameras).

5. Applications

In this section, we show two applications after the recov-
ery of camera spectral sensitivity functions.

5.1. Simulation of Color Rendering for Cameras

A straightforward application is to simulate the color
rendering of a multi-spectral image for cameras, i.e., gener-
ating a RGB image for certain camera models. This is use-
ful for the design and evaluation of cameras. Figure 9 shows
an example where renderings are made using the measured
and recovered camera spectral sensitivities of Canon 60D.
The multispectral images are from the database [25]. Color
difference is calculated, and they are close to one, indicating
the accuracy of the recovered camera spectral sensitivities.
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Figure 6. The recovery of camera spectral sensitivities of Canon 60D. (a) The measured spectrum of a daylight. (b) The spectral reflectance
of a color checker DC. (c) The captured image (glossy and duplicate patches are removed to avoid overweighting certain colors). (d) The
recovered spectral sensitivities with known daylight spectrum. By using a daylight model, we can recover both the daylight spectrum
(e) and the camera spectral sensitivities (f). The subscripts m and e in (d) and (f) stand for the measured and estimated camera spectral
sensitivities, respectively.

  











Figure 7. The recovered camera spectral sensitivities of Canon 60D using other basis functions: (a) Fourier basis, (b) polynomial basis,
and (c) radial basis. The results are worse than that of using the PCA model as shown in Fig. 6(f). The subscripts m and e stand for the
measured and estimated camera spectral sensitivities, respectively.

5.2. Computational Color Constancy

Knowing camera spectral sensitivities is also useful for
computational color constancy [2], i.e., removing the over-
all color cast in captured images. In order to recover the
correct color of a scene, camera raw data needs to be con-
verted to device-independent XYZ by Eq. (5), and then a
chromatic adaptation transform is used to take care of the
difference in the white point. A simple way to calculate the

scene white point is [X Y Z]Tw = T · [R G B]Tw, where
[R G B]Tw is the radiance of a white Lambertian area in the
picture. A linear Bradford chromatic adaptation transform
is used to convert to CIE D65, the white point of sRGB color
space by default [2]. Computational color constancy relies
on the accurate estimation of T (by Eq. (5)) and the white
point of the scene. Knowing camera spectral sensitivities
can help us estimate the matrix T correctly.
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Figure 10. The correction of images by Canon 5D Mark II by removing the color cast in the image. A color checker is put in the scene for
reference. The estimated camera spectral sensitivities of Canon 5D Mark II is used to calculate T by Eq. (5). (a) The captured image in
sRGB. (b) The corrected image in sRGB based on T (c) The corrected image by dividing the white point (without using T).

 





Figure 8. Comparison of four types of basis functions for mod-
eling camera spectral sensitivity functions: A–PCA model (ours,
Fig. 6(f)), B–Fourier basis (Fig. 7(a)), C–radial basis (Fig. 7(c)),
and D–polynomial basis (Fig. 7(b)) with the ground truth (E). A
color checker is rendered under D65 with camera spectral sensitiv-
ities recovered using these basis functions, and converted to sRGB.
The average color difference between the renderings (from A to D)
and the ground truth (E) are 1.59, 3.54, 2.43 and 7. The gain of
the imaging system remains the same for all four basis functions.
Table 1. The spectral RMS between the measured and recov-
ered camera spectral sensitivities using four types of basis func-
tions. For polynomial, Fourier, and radial, 8 basis functions are
used [26]. At all noise levels, the PCA model outperforms other
basis functions.

In Fig. 10, the picture was captured by Canon 5D Mark
II, whose camera spectral sensitivities were estimated using
a single picture under unknown daylight. T was obtained
by Eq. (5) using the estimated camera spectral sensitivities.
The corrected image (Fig. 10(b)) is based on the T matrix.










Figure 9. Simulation of color rendering for cameras. The images
are rendered to sRGB based on the measured (top row) and esti-
mated (bottom row) camera spectral sensitivities of Canon 60D.
(a) face, (b) beads, and (c) peppers are from the multispectral im-
age database [25]. The values in the parentheses are the average
color difference (CIEDE00 [11]) between the bottom and top im-
ages in each column. For all three examples, the color difference
is close to one, indicating a close color match.

Without camera spectral sensitivities, one of the methods
to correct the images is to divide the white point RGB as
shown in Fig. 10(c). By comparing the two corrected im-
ages, the color is more saturated and natural in Fig. 10(b)
based on the recovered camera spectral sensitivities. More
examples can be found in the supplementary material.

6. Discussions

In this paper, we explored the space of spectral sensi-
tivity functions for digital color cameras. We measured
a database of 28 cameras. We found the space of cam-
era spectral sensitivities to be convex and two-dimensional.
Based on the statistical model, we propose two methods to
recover camera spectral sensitivities from a single image
with and without knowing the illumination. Compared to
other basis functions, we find the PCA-based model more
accurate and robust to noise. We also showed several appli-
cations with the recovery of camera spectral sensitivities.
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The proposed method also has limitations. First, spu-
rious measurements or outliers in the database may cause
errors in the learned PCA model. Functional PCA [20] may
be used to overcome this problem. Second, our method as-
sumes we have access to camera raw data to ensure the lin-
earity. When this assumption does not hold, both camera
response function and camera spectral sensitivities have to
be estimated simultaneously.

The proposed method works well under unknown day-
light. Next, we are interested in the recovery of camera
spectral sensitivities under general unknown illumination
such as indoor overhead light or mixed lighting. Finally, we
are also interested in applying the statistical model of cam-
era spectral sensitivities to infer some spectral information
for Internet photos.
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Figure 1. Experimental setup to obtain the ground truth of camera
spectral sensitivity.

1. Experimental Setup to Measure the Ground

Truth of Camera Spectral Sensitivity

As shown in Fig. 1, we have measured the spectral sen-
sitivity functions for 28 cameras, including professional
DSLRs, point-and-shoot, industrial and mobile cameras
(i.e.Nokia N900), using a monochromator and a spec-
trometer PR655. At each wavelength, the camera spec-
tral sensitivity in RGB channels is calculated by c(λ) =
d(λ)/(r(λ) · t(λ)), where d is the raw data recorded by the
camera, r is the illuminant radiance measured by the spec-
trometer, and t is the exposure time of the camera. All
other settings (i.e., ISO and aperture) remained the same
during the measurement for each camera. The procedure is
repeated across the whole visible wavelength from 400 to
720nm with an interval of 10nm.

2. Recovery of Camera Spectral Sensitivity Us-

ing Other Basis Functions

To fully evaluate the recovery performance using eigen-
vectors extracted from camera spectral sensitivities, we
compared the recovery by using other basis functions. Zhao
et al. [2] tested three basis functions besides camera space
eigenvectors, and they are polynomial, Fourier, and radial
basis functions. Zhao et al. [2] concluded that radial basis
functions are the best.

The equation for the basis functions can be found
here [2]. However, for completeness, these equations are
listed in the paper. The equation for the Fourier basis func-
tion is expressed as

F =
D�

i=0

ai · sin(iλπ), (1)

where λ is the wavelength vector normalized to be between
0 and 1. The Fourier basis functions are shown in Fig. 2(a).

The polynomial basis function is expressed as

F =
D�

i=0

ai · λi, (2)

where λ is the wavelength vector from 400nm to 720nm
with an interval of 10nm. It is normalized to be between 0
and 1. The recovered spectral sensitivity, F is a linear com-
bination of λi. The polynomial basis functions are shown
in Fig. 2(b).

The radial basis functions are expressed as

F =
D�

i=0

ai · exp(−
(λ− µi)2

σ2
), (3)

where λ is the wavelength vector normalized to be between
0 and 1. µi and σ2 are the peak wavelength and the vari-
ance of each basis function. The radial functions are shown
in Fig. 3(a), (b) and (c) for the red, green, and blue chan-
nels. Eight basis functions are selected for the polynomial,
Fourier, and radial method [2].

3. Robustness of Spectral Sensitivity Recovery

to Daylight Variation

Judd [1] proposed that the daylight spectrum can be well
represented using only a few parameters. To fully evaluate
our recovery of camera spectral sensitivity under daylight,
we simulated radiance using daylight measured at different
time of the day, based on which the camera spectral sensitiv-
ity is recovered. The measured and recovered camera spec-
tral sensitivity was then compared and spectral RMS calcu-
lated. The mean RMS for all 28 cameras in the database

1



  

Figure 3. The radial basis functions of the (a) red, (b) green, and (c) blue channel.





Figure 2. The Fourier basis and polynomial basis functions.

is in Fig. 4. The recovery accuracy is about 0.06, almost
invariant to daylight at different time of the day.

4. Dimensionality of Spectral Sensitivity

While the camera spectral sensitivity is of high dimen-
sion (i.e.33 if the wavelength ranges from 400nm to 720nm





Figure 4. The spectral RMS error between the recovered and mea-
sured camera spectral sensitivity at different time of the day.

with an interval of 10nm), it can be represented using much
fewer parameters. The variance that can be explained given
the number of eigenvectors retained in the model is shown
in Fig. 5. With two eigenvectors, we found that the camera
spectral sensitivity can be well represented.



  


Figure 6. The recovery of the camera spectral sensitivity of NikonD3 using a single picture of CCDC under unknown daylight. (a) The
radiance error given the estimated camera spectral sensitivity at a certain CCT. The daylight spectrum that yields the lowest radiance
difference is plotted in (b) and compared with the ground truth. (c) The measured and recovered camera spectral sensitivity of NikonD3.
The subscripts m and e stand for the measured and estimated camera spectral sensitivity.
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Figure 5. The percentage of total variance of the camera spectral
sensitivity explained given the number of eigenvectors retained in
the model. The first two eigenvectors are found to be enough to
represent the space of camera spectral sensitivity.

5. Results on Spectral Sensitivity Recovery

We recovered the camera spectral sensitivity of NikonD3
using a picture of CCDC under unknown daylight. The ra-
diance error given the CCT of daylight is in Fig. 6(a). The
daylight spectrum that yields the least radiance eror is se-
lected, and it is plotted in Fig. 6(b) with the measured day-
light spectrum. A close match can be found between our
recovered daylight and the ground truth. The recovered and
measured camera spectral sensitivity are shown in Fig. 6(c).
Similarly, the camera spectral sensitivity of a smartphone
camera, NokiaN900, and another DSLR, Canon5D Mark II
are recovered in Fig. ??.

6. Results on Computational Color Constancy

Accurate color corrections of images can be made by
knowing the camera spectral sensitivity. In order to recover
the correct color of a scene, camera raw data needs to be
converted to device-independent XYZ by Eq. (5) in the pa-
per, and then a chromatic adaptation transform (i.e.a linear
Bradford transform) is used to take care of the difference
in the white point. Computational color constancy relies on
the accurate estimation of T (by Eq. (5)) and the white point
of the scene. Knowing camera spectral sensitivity can help
estimate T correctly. Examples are shown in Fig. 8. The
color cast in the captured images in Fig. 8 is removed suc-
cessfully by knowing T estimated from the recovered cam-
era spectral sensitivity of Canon 5D MarkII. On the other
hand, the corrected images are less saturated by dividing
the white point (without knowing the T matrix).
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Figure 8. The correction of images by Canon5D Mark II by removing the color cast in the image. CC is put in the scene to locate the white
point. The estimated camera spectral sensitivity of Canon5D Mark II is used to calculate T by Eq. (5). Left column: The captured image;
Middle column: the corrected image based on T, and Right column: the corrected image by dividing the white point (without using T).
The images are rendered in sRGB color space.


