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ABSTRACT

Measurement, Modeling, and Synthesis of

Time-Varying Appearance of Natural Phenomena

Jinwei Gu

Many natural phenomena evolve over time — often coupled with a change in their re-

flectance and geometry — and give rise to dramatic effects in their visual appearance. In

computer graphics, such time-varying appearance phenomena are critical for synthesizing

photo-realistic images. In computer vision, understanding the formation of time-varying ap-

pearance is important for image enhancement and photometric-based reconstruction. This

thesis studies time-varying appearance for a variety of natural phenomena — opaque sur-

faces, transparent surfaces, and participating media — using captured data. We have two

main goals: (1) to design efficient measurement methods for acquiring time-varying appear-

ance from the real world, and (2) to build compact models for synthesizing or reversing the

appearance effects in a controllable way.

We started with time-varying appearance for opaque surfaces. Using a computer-

controlled dome equipped with 16 cameras and 160 light sources, we acquired the first

database (with 28 samples) of time-and-space-varying reflectance, including a variety of

natural processes — burning, drying, decay and corrosion. We also proposed a space time

appearance factorization model which disassembles the high-dimensional appearance phe-

nomena into components that can be independently modified and controlled for rendering.

We then focused on time-varying appearance of transparent objects. Real-world trans-

parent objects are seldom clean — over time their surfaces will gradually be covered by

a variety of contaminants, which produce the weathered appearance that is essential for

photorealism. We derived a physically-based analytic reflectance model for recreating the

weathered appearance in real time, and developed single-image based methods to measure

contaminant texture patterns from real samples.



The understanding of the weathered appearance of transparent surfaces was also used

for removing image artifacts caused by dirty camera lenses. By incorporating priors on

natural images, we developed two fully-automatic methods to remove the attenuation and

scattering artifacts caused by dirty camera lenses. These image enhancement methods can

be used for post-processing existing photographs and videos as well as for recovering clean

images for automatic imaging systems such as outdoor security cameras.

Finally, we studied time-varying appearance of volumetric phenomena, such as smoke

and liquid. For generating realistic animations of such phenomena, it is critical to obtain

the time-varying volume densities, which requires either intensive modeling or extremely

high speed cameras and projectors. By using structured light and exploring the sparsity of

such natural phenomena, we developed an acquisition system to recover the time-varying

volume densities, which is about 4 ∼ 6 times more efficient than simple scanning. From the

perspective of computer vision, our method provides a way to extend the applicable domain

of structured light methods from 2D opaque surfaces to 3D volumes.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Time-Varying Appearance: What and Why

One of the fundamental problems in computer graphics, computer vision and digital pho-

tography is to understand and simulate the visual appearance of our real world. Every

day we perceive the world through many different aspects of visual appearance — color and

texture, shading and shadows, highlights and caustics, subsurface and volumetric scattering

— all of which are caused by different interactions between light and objects.

Understanding and simulating appearance phenomena has been the topic of a great

deal of research — particularly in the last 10 to 20 years. In this thesis, we refer to these

research topics as appearance modeling. As shown in Figure 1.1, appearance modeling

plays a central role in many related areas — it is critical for creating photo-realistic images

for computer games and movies; it is the basis for many physics-based image restoration

algorithms and photometric 3D reconstruction methods; and understanding the appearance

of natural phenomena is indispensable to imaging science in applications such as remote

sensing, digital photography, printing, and displays.

The appearance of an object depends on many factors — geometry and texture (spa-

tial variation), color (spectral variation), and viewing and lighting conditions (directional

variation). While extensive research has been devoted to understanding these factors, one

important dimension that has long been neglected is the variation over time. Almost all

objects evolve with time, and so does their appearance. As shown in Figure 1.2, the tem-
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Computer Vision

Remote Sensing

Digital Photography

Image Restoration

Printing & Display

Appearance

Modeling

Computer Graphics

Figure 1.1: Appearance modeling plays a central role in many research areas.

poral variations in appearance are often caused by either chemical, mechanical or biological

processes [Dorsey et al., 2008], such as the weathering of stones, the decaying of fruit, the

accumulation of dust, and the convection of smoke. These processes form complex spatial

patterns over time, often coupled with a change in reflectance or geometry, which gives rise

to dramatic visual effects.

These temporal variations in appearance, referred to as time-varying appearance, are

important for many tasks in computer graphics, computer vision, and digital photography:

• Computer graphics: Time-varying appearance — dust, rust, moss — implies objects

undergoing a natural weathering process and therefore is important for the synthesis

of photo-realistic images.

• Computer vision: To reconstruct the geometry of many dynamic natural phenomena,

such as smoke, fire, clouds, or water, we need to understand how their appearance

changes over time.

• Digital photography : To recover scene information from photographs that are taken
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Figure 1.2: Examples of time-varying appearance of natural phenomena.

under undesirable conditions (e.g., in bad weather or through defective optical imaging

systems), it is important to understand how these appearance phenomena will affect

image formation.

Despite its importance, time-varying appearance of natural phenomena has not yet been

fully explored. First, previous studies have mostly focused on the physical simulation of

specific phenomena, which is difficult to generalize and expensive to compute. Second,

although some recent work has made progress towards a general solution by using captured

data, due to the high dimensionality of time-varying appearance, these methods often have

limited flexibility for artistic control. Finally, for complex dynamic natural phenomena,

such as smoke, the acquisition can be quite challenging.

In this thesis, we address these problems with a series of studies and make the following

contributions:

• acquired the first database of time-varying surface appearance covering a range of

natural phenomena for both opaque and transparent surfaces.

• proposed the space-time factorization model for time-varying surface appearance,

which offers intuitive control and editing abilities in rendering.

• derived a phenomenological reflectance model for rendering a weathered appearance

of transparent surfaces in real time.

• developed automatic methods to reverse the weathered appearance, i.e., to remove

image artifacts caused by dirty camera lenses.
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• presented an efficient structured light method to recover volume densities of dynamic

inhomogeneous participating media.

Our definition of time-varying appearance consists of two categories. One category is

dynamic processes that change in appearance over time, such as the drying of wood, rusting

of iron, and convection of smoke, which are often represented as videos. The other category

is appearance phenomena that are caused by aging over a period of time, such as weathered

stone, decayed banana, surface scratches and cracks, which are also referred to as weathered

appearance [Dorsey et al., 2008]. Weathered appearance is not strictly “time-varying” since

it is often represented as still images rather than videos. Nevertheless, it is the result of

time-varying processes. In order to synthesize weathered appearance, we often need to

understand and simulate the time-varying processes that cause the weathering. Therefore,

time-varying appearance and weathered appearance are interchangeable in this thesis.

In the remainder of this chapter, we first briefly review previous studies on time-varying

appearance and discuss their limitations (Section 1.2). We then explain our approach and

present an overview of the thesis (Section 1.3).

1.2 Related Work

The study of the appearance of natural phenomena has always aroused great interest among

researchers — mathematicians and physicians seek to grasp the beauty of nature and find

simple, elegant representations; biologists and psychologists try to understand the human

visual system and perception of various appearance phenomena. In computer graphics

and computer vision, in particular, our goal is to develop models that enable computer

simulation of real-world phenomena and use these models to extract scene information. Over

the years, many approaches have been developed in the computer graphics and computer

vision communities to achieve this goal. These approaches are categorized into three groups

— rule-based, physically-based, and data-driven — roughly in chronological order.
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1.2.1 Rule-based: Texture Generation

In the early stage of computer graphics (1970s-1990s), much effort was devoted to the

replication of the texture patterns of natural phenomena, such as marble, wood, cloud,

fur, and rust. Texture patterns can be manually composed by artists from photographs

or paintings [Demers, 2001]. While labor intensive, this method is still used in the film

industry today.

Researchers have developed automatic algorithms for pattern generation based on a few

characteristic rules of natural phenomena:

• Self-similarity has been observed in many places in nature, such as coastlines and

snowflakes. A number of recursive algorithms have been proposed to generate fractal-

like patterns, such as L-systems for plants [Prusinkiewicz and Lindenmayer, 1990]

and fractal Brownian motion for landscapes and ocean waves [Barnsley et al., 1988].

By introducing the turbulence function (i.e., a sum of noise components with a frac-

tal power spectrum), Perlin [1985] proposed procedural methods to create realistic

textures such as marble, fire, and fur [Perlin and Hoffert, 1989; Ebert et al., 1998].

Fractal methods have also been used together with heuristic rules to generate blemish

patterns such as coffee stains and metal rusts [Becket and Badler, 1990].

• Physical/chemical/biological principles have been employed for pattern formation,

where texture patterns are regarded as some features of a physical system and are

formed either by the spontaneous breaking of physical equilibrium [Cross and Hohen-

berg, 1993] or by the diffusion of substances of some chemical [Turk, 1991; Witkin

and Kass, 1991] or biological processes [Meinhardt, 1992].

• Characteristics of surface geometry, such as surface accessibility [Miller, 1994] and cur-

vature [Hsu and Wong, 1995], have been used for synthesizing weathered appearance

such as that resulting from rusting and dust accumulation.

These rule-based methods are intuitive and convenient to use. However, as with any

procedural methods, they can only model the texture patterns for a small set of natural

phenomena. Moreover, these methods are insufficient to deal with more complex appearance

effects, such as angular variations (i.e., lighting and view) and scattering.
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1.2.2 Physically-based: Modeling and Simulation

Another approach to the study of appearance originated in physics (more precisely, radiom-

etry and imaging science). In this approach, the primary goal is to quantitatively model

the exact interaction between light and objects rather than the replication of texture pat-

terns. These models are often derived from first principles, resulting in analytic formula

with physically-meaningful parameters.

In computer graphics, traditional empirical models for surface reflection, such as the

Phong model, have been replaced with physically-based models [Cook and Torrance, 1981;

He et al., 1991; Oren and Nayar, 1994] that are derived by modeling the scattering of

rough surfaces. Light transport theory in radiative transfer [Chandrasekhar, 1960; Ishimaru,

1978] has also been introduced to model subsurface scattering [Hanrahan and Krueger,

1993; Jensen et al., 2001] and volumetric scattering [Narasimhan and Nayar, 2003a] in

participating media such as skin and smoke.

For time-varying appearance, researchers have developed models to simulate the under-

lying physical or chemical processes of specific types of dynamic natural phenomena, such

as water flow [Dorsey et al., 1996], patina [Dorsey and Hanrahan, 1996], and stone corro-

sion [Dorsey et al., 1999; Merillou et al., 2001]. Chen et al. [2005] proposed to synthesize

a weathering degree map by simulating the reflection and deposition of Gamma-tons on

surfaces, which is an interesting combination of physical simulation and rule-based texture

synthesis. Recent work in this area has been summarized in the surveys by Dorsey et al.

[2008] and by Merillou and Ghazanfarpour [2008].

These physically-based models and simulations provide an analytic way to reproduce the

appearance of natural phenomena in computer graphics. The realism of rendered images is

often greater than rule-based texture synthesis. However, there are three main limitations

of physically-based methods as they are used in computer graphics:

• Limited realism. Due to the requirement of extensive domain knowledge to understand

the physical mechanisms behind the natural phenomena. The full generality of texture

pattern formation remains beyond the reach of any particular mathematical model or

physical simulation, especially for many complex natural phenomena.
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• Difficult to generalize and transfer. A given model or simulation can only work for a

specific phenomenon.

• Computationally expensive. Physical simulation often takes a long time to compute,

which makes it difficult to tune parameters and control the final output.

Physically-based appearance models have also been extensively applied in computer

vision and image processing. Using appearance models, researchers can develop compu-

tational algorithms or imaging methods to remove image artifacts and restore scene in-

formation from captured images taken under some undesirable conditions. The model for

scattering of the atmosphere [Middleton, 1952] has been applied to enhance images taken

on a foggy day and recover 3D structures [Narasimhan and Nayar, 2003b]. Polarization has

been used for dehazing [Schechner et al., 2003a] and underwater imaging [Schechner and

Karpel, 2005]. Physical models for rain have also been successfully used to remove rain

from images and videos [Garg and Nayar, 2004]. However, the challenge of employing these

models for computer vision tasks is to find compact approximations with fewer parameters

to make estimation with sufficient accuracy.

1.2.3 Data-driven: Measurement and Synthesis

Data-driven methods for appearance modeling have received considerable attenuation in

computer graphics since the mid-1990s. For these methods, cameras are used to acquire

measurements from the real world and captured data is used to create novel images using

interpolation. With the evolution of hardware (e.g., cheaper image sensors and storage,

more powerful graphics cards), data-driven methods introduce a standard pipeline to quickly

reproduce realistic appearance in computers, even for complex natural phenomena.

The simplest and earliest data-driven application in computer graphics is probably tex-

ture synthesis, which uses a collection of texture samples to generate novel textures in a

copy-and-paste manner [Efros and Freeman, 2001; Kwatra et al., 2003]. This idea was ex-

tended for temporal textures with repetition over time, such as fountains, waterfalls, and

fire [Szummer and Picard, 1996; Schodl et al., 2000; Soatto et al., 2001]. However, these

methods cannot be easily applied for our purpose, because for many natural phenomena
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with time-varying appearance, such as drying, burning, and decaying, the visual appearance

often evolves over time with no repetition.

Data-driven methods have also been applied to measure material properties, such as

reflectance [Matusik et al., 2003; Lawrence et al., 2006], bi-directional texture function [Dana

et al., 1999], and scattering parameters [Narasimhan et al., 2006]. In addition, researchers

have proposed to directly acquire a light field [Levoy and Hanrahan, 1996; Gortler et al.,

1996] or even the light transport matrix [Garg et al., 2006] for view interpolation and image

relighting.

Compared to static appearance, there is much less data-driven work for time-varying

appearance. Some researchers recently made a first attempt at measuring time-varying

appearance. Koudelka [2004] studied time-varying textures (for a fixed lighting and view)

using linear matrix factorization and extended static texture synthesis to time-varying tex-

ture using image quilting [Efros and Freeman, 2001]. Sun et al. [2006] measured time-varying

surface reflectance of drying paints and household dust. Garg and Nayar [2006] acquired

a database of rain streaks and the splash of water drops [Garg et al., 2007] for rendering

rain. Lu et al. [2007, 2005] measured the texture patterns of several weathering processes

and their corresponding context information (e.g., temperature, lighting, humidity) for later

synthesis.

While successful in many applications of computer graphics, data-driven methods also

exhibit limitations, especially for complex appearance phenomena:

• Expensive acquisition. Since data-driven methods often sample appearance in a high-

dimensional space, they often require a large number of synchronized light sources and

cameras, such as the light stage for performance capture [Wenger et al., 2005]. More-

over, for measuring complex appearance phenomena such as smoke, special devices

such as a ultra-high speed camera (5000fps) and a powerful laser are required [Hawkins

et al., 2005]. For other complex phenomena such as subsurface scattering, it is still

quite challenging to design and implement a measurement system [see Donner et al.,

2008].

• Cumbersome and redundant representation. Traditionally, measurements are often

represented as tables. As the dimensionality of appearance phenomena becomes
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higher, this representation soon becomes cumbersome for rendering, storage, and

transmission. Typical examples are the 4D light field and 8D light transport ma-

trix, which might require tens of thousand megabytes to store for one scene. Existing

compression techniques cannot completely solve the problem. While we are aware that

there is much redundancy in the measured data, we have not yet found appropriate

compact models for representation.

• Limited controllability in rendering. The tabulated representation, especially in a

high-dimensional space, also imposes difficulties in rendering. While it is relatively

simple to reproduce the measured data via interpolation, a more meaningful and

difficult problem is to create novel appearance according to user controls. For time-

varying appearance where spatial and temporal variations are coupled, factorization

models are desirable.

1.3 Thesis Overview and Organization

In this thesis, our methodology for the study of time-varying appearance is data-driven. To

address the limitations of the data-driven approach, we actively incorporate the physics of

appearance phenomena into the data-driven pipeline, with three main objectives:

• to design efficient acquisition methods for measuring time-varying appearance of nat-

ural phenomena;

• to find compact representations for modeling complex, high-dimensional time-varying

appearance;

• to develop intuitive and controllable algorithms for synthesizing or reversing time-

varying appearance effects.

We call our methodology a hybrid approach. Using this hybrid approach, we systemat-

ically investigated the measurement, modeling, and synthesis of time-varying appearance

for opaque surfaces (e.g., wood, steel, stone), transparent surfaces (e.g., glasses, windows,

camera lenses), and inhomogeneous participating media (e.g., smoke, mixing fluids).
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In Chapter 2, we review some important concepts and definitions in appearance model-

ing, and place our work in the context of related research.

In Chapter 3, we study the time-varying appearance of opaque surfaces. Using a multi-

light multi-camera dome, we acquired a database of 28 time-varying surfaces caused by

burning, drying, decay and corrosion. We also proposed a nonlinear factorization model,

which separates the spatial and the temporal variations from the captured data for artistic

control.

Chapter 4 looks at the weathered appearance of transparent objects. Real-world trans-

parent objects, such as windows, eyeglasses, camera lenses, and monitors, are seldom clean–

over time their surfaces are gradually tainted by contaminants, such as dust, dirt, and lipids.

Scattering from these contaminants causes visual effects that are essential for photorealism.

We derived a physics-based analytic model for contaminated transparent surfaces, which

enables not only real-time rendering but also the measurement of contamination patterns

from a single image.

In Chapter 5, we turn the focus to how to “reverse” the appearance phenomena from

captured images and videos. Specifically, we studied how to remove image artifacts caused

by dust or dirt on camera lenses. These image artifacts are not only an annoyance for

photographers, but also a hindrance to computer vision and digital forensics. By using

multiple images and incorporating priors on natural images, we proposed several automatic

methods to remove the artifacts from images and videos.

In Chapter 6, we investigate the recovery of volume densities for dynamic inhomogeneous

participating media (e.g., smoke, mixing fluids). Efficiency is the key for recovering such

high-speed natural phenomena. We introduce a single-view method that reconstructs time-

varying volume densities using structured light. The proposed method achieves higher

efficiency by exploiting the sparsity in these natural phenomena.

Finally, Chapter 7 concludes the thesis with a summary of our contributions and some

directions for further research.
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Chapter 2

Background and Overview

In this chapter, we review some basic concepts and definitions in appearance modeling

(Section 2.1). According to the dimensionality and variables involved in these concepts, we

organize existing work into a taxonomy and place our thesis in the context (Section 2.2). For

more details, please refer to the following relevant literature in computer graphics [Dorsey

et al., 2008] and physics [Ishimaru, 1978; Chandrasekhar, 1960].

2.1 Definition and Nomenclature

Appearance of natural phenomena can be coarsely categorized into two sets. The first

set is the appearance of surfaces, such as wood, stone, metal, or glass. When light hits

the surfaces, it will be either reflected or refracted. The second set is the appearance of

participating media, such as fog, smoke, liquid, or tissue, where small particles in the media

interact with light as it passes through. For non-emissive participating media, the light

will be either absorbed or scattered. For surfaces, the light interaction is localized, i.e.,

the appearance of one point is independent with another point; for participating media,

the light interactions at different points are correlated. There are separate concepts and

algorithms in computer graphics for representing and reproducing the appearance for each

set. That being said, the distinction between surfaces and participating media is mostly

academic. In fact, surfaces are merely a limiting case of participating media.
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2.1.1 Appearance of Surfaces

Before we define concepts for appearance of surfaces, let us first define concepts for describ-

ing light. What is light? Light is radiation energy. In radiometry and computer graphics,

we mostly deal with geometry optics and assume light travels in straight line. A widely

used concept for describing light is radiance, L(θ, φ) which is defined as the radiation flux

incident on a unit foreshortened area per unit solid angle:

L(θ, φ) =
dΦ

dA · cos θ · dω
[W · m−2 · sr−1]. (2.1)

Radiance has a nice property in that it is preserved when light travels along straight

lines, if there is no participating media [Brewster, 1992]. To understand the appearance of

a given material, we need to know the relationship between the total incident flux and the

reflected flux for each direction. This heuristics was first formally formulated by Nicodemus

et al. [1977]. With a set of reasonable assumptions, they formulated that the surface appear-

ance can be characterized with a 4D function, named Bi-directional Reflectance Distribution

Function(BRDF), defined as the ratio between the exitant radiance and the incident irra-

diance:

f(ωi, ωo) =
dLo(ωo)

Li(ωi) · cos θi · dωi
[sr−1]. (2.2)

The geometry of the incident and exitant radiation can be represented by a simple

polar diagram as in Figure 2.1. BRDF only characterizes reflection properties of sur-

faces, i.e., the incident direction (θi, φi) and the reflected direction (θr, φr) are in the same

hemisphere. This definition can be extended to Bi-directional Transmittance Distribution

Function(BTDF) for situations where (θi, φi) and (θt, φt) are in different hemispheres. Bi-

directional Scattering Distribution Function (BSDF) is a superset of BRDF and BTDF,

where (θi, φi) and (θo, φo) can take values from the entire sphere instead of hemispheres.

There are three fundamental constraints for physically-valid BRDF functions:

• Non-negativity:

f(ωi, ωo) ≥ 0. (2.3)

• Energy conservation: this constraint states that the total reflected energy must not

excess the total incident energy. Specifically, the total incident energy per unit area
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Figure 2.1: Definition of Bi-directional Reflectance Distribution Function (BRDF).

(i.e., irradiance) E is

E =

∫

4π
Li(ωi) · cos θi · dωi [W · m−2], (2.4)

and the total reflected energy per unit area (i.e., total exitant radiance) M is

M =

∫

4π
Lo(ωo) · cos θo · dωo

=

∫

4π

(
∫

4π
Li(ωi) · f(ωi, ωo) · cos θi · dωi

)

· cos θo · dωo [W · m−2].

(2.5)

For energy conservation, we must have M ≤ E, and therefore we have the following

constraint on the BRDF function:

∫

4π
f(ωi, ωo) · cos θo · dωo ≤ 1. (2.6)

• Helmholtz reciprocity: this property states the symmetry of surface reflectance. It

says that if the incident direction and the reflected direction are swapped with each

other, the amount of reflected light remains the same:

f(ωi, ωo) = f(ωo, ωi). (2.7)
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This equation assumes that both the incident direction and the reflected direction

are within the same medium. For light interactions across two different media (e.g.,

refraction), Veach [1998] extended the above equation to a generalized Helmholtz

reciprocity as:
f(ωi, ωo)

n2
o

=
f(ωo, ωi)

n2
i

, (2.8)

where ni is the refractive index of the medium where the incident radiance is coming

from, no is the refractive index of the medium where the exitant radiance is going to.

The generalized Helmholtz reciprocity is important to prove the BRDF reciprocity

for surfaces composed of multiple layers, as we will show in Chapter 4.

As stated previously in Chapter 1, there are two ways to describe a BRDF function.

One is parametric models where the BRDF function is some analytic formula that can be

directly evaluated for any given incoming and outgoing directions. These formulas are either

determined empirically (e.g., Lambertian model, Phong model, Ward model [Ward, 1992],

Lafortunate model [Lafortune and Torrance, 1997]) or derived physically based on first

principles (e.g., Cook-Torrance model [Cook and Torrance, 1981], Oren-Nayar model [Oren

and Nayar, 1994], He-Torrance model [He et al., 1991]). Among the parameters commonly

used for parametric BRDFs, there are three important parameters: kd — the reflectance of

the diffuse component of the BRDF; ks — the reflectance of the specular component; and

σ — surface roughness which is the mean slope of surface micro-facet.

The second way is non-parametric models where the BRDF functions are measured at

a given set of incoming and outgoing directions and represented as tabulated data [Matusik

et al., 2003]. Measured BRDFs are generally believed to have higher realism to real world

materials.

BRDF is an important building block for modeling the angular dependency of surface

appearance. It can be extended to include other variations, such as spatially-varying BRDF

where two spatial coordinates are added to describe spatially-varying material properties.

This thesis is to introduce the time dimension into BRDF for time-varying appearance.

More details are discussed later in Section 2.2.
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2.1.2 Appearance of Participating Media

A participating medium is one type of material that affects the transport of light through

its volume. Examples include atmosphere, seawater, fog, smoke, and tissue. To describe the

appearance of participating media, we need to formulate the absorption and the scatter-

ing of the interaction between light and the particles in the media. The atomic concept for

characterizing these types of phenomena is scattering. Scattering has been thoroughly stud-

ied in physics [Chandrasekhar, 1960; Ishimaru, 1978] and was first introduced in computer

graphics by Hanrahan and Krueger [1993].

In this thesis, we focus on non-emissive participating media. To describe the appearance

of participating media, we need to introduce some definitions for scattering.

The first quantity we introduce is density of particles, or sometimes shortened as density,

ρ, which represents the number of particles per unit volume. Its unit is m−3.

To describe the absorption and scattering behavior for a given participating medium, we

introduce absorption cross section σa and scattering cross section σs. These two quantities

are characteristics of the participating medium. They have the same unit m2. In particle

physics, the concept of a cross section is used to express the likelihood of interaction between

particles. When particles are thrown against a foil made of a certain substance, the cross

section is a hypothetical area measure around the target particles that represents a surface.

If a particle of the beam crosses this surface, there will be some kind of interaction.

There are two other related quantities: absorption coefficient µa, defined as µa = ρ · σa

and scattering coefficient µs, defined as µs = ρ · σs. The unit of both the absorption

coefficient and the scattering coefficient is m−1. The physical meaning of the absorption

coefficient is the probability of the occurrence of absorption event when light travels one

meter within the medium, and the scattering coefficient is the probability of scattering event

per unit meter. A commonly-used concept in computer graphics is called mean free path ℓ,

defined as

ℓ =
1

µa + µs
[m]. (2.9)

As shown, the mean free path ℓ has a unit of length. Its physical meaning is the average

distance covered by a particle between successive light interactions (i.e., absorption or

scattering). It is also the distance at which the power flux of the incident light decreases
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Figure 2.2: A diagram showing the scattering of participating media.

to e−1 ≈ 37%. Intuitively, the distance that we can “see through” a slab made of some

participating medium is about one mean free path.

The scattering albedo, or sometimes shortened as albedo of a participating medium is

defined as

W0 =
σs

σs + σa
. (2.10)

This is a dimensionless quantity. Its value is between 0 and 1. Higher values in albedo

means light is more likely to scatter within the medium.

Another important dimensionless quantity is optical thickness τ , defined as

τ =

∫ d

0
ρ · (σa + σs)ds, (2.11)

for a layer of participating medium with thickness of d. The optical thickness τ is exactly

the same as the number of mean free paths through the layer.

With the quantities defined above, we can now formulate the absorption and scattering

mathematically. As shown in Figure 2.2, consider a segment of the participating medium

of length ds, for the incident light L(ω), it will attenuate the incident radiance because of

absorption and out-scattering (i.e., scattering in other directions), which is given by:

dL−(ω) = −ρ · (σa + σs) · ds · L(ω). (2.12)

At the same time, the segment of participating medium will also gather light scattered

from other directions (i.e., in-scattering). To characterize in-scattering, we first introduce

phase function. Phase function p(ω′, ω) describes the amount of light scattered from one

direction ω′ to another direction ω. There are a number of ways in which the phase function
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may be normalized. Here we adopt the normalization in [Prahl, 1988], which requires the

integral of the phase function over all angles to equal unity

∫

4π
p(ω′, ω)dω′ = 1. (2.13)

Therefore, the unit of the phase function is sr−1. One commonly-used parametric model for

the phase function is the Henyey-Greenstein phase function [Henyey and Greenstein, 1940]

p(ω′, ω) = pHG(θ) =
1

4π
·

1 − g2

(1 + g2 − 2g cos θ)3/2
, (2.14)

where θ is the angle between the direction ω and the direction ω′. The Henyey-Greenstein

phase function has one parameter g, which satisfies

g =

∫

4π
pHG(θ) cos θdω, (2.15)

and thus g is often called the average of cosines. In this thesis, g is called the Henyey-

Greenstein parameter. If g = 0 the scattering is isotropic, i.e., p(ω′, ω) = 1
4π ; if g > 0

the scattering is predominantly forward whereas if g < 0 the scattering is predominantly

backward. Some other commonly-used phase functions can be found in [Prahl, 1988].

Given the phase function of the participating medium p(ω′, ω), the total amount of light

scattered from other directions into the direction ω within the segment of the participating

medium is given by

dL+(ω) = ρ · σs · ds ·

∫

4π
p(ω′, ω) · L(ω′) · dω′. (2.16)

Combining Equations (2.12) and (2.16), the complete light transport equation is given by

dL(ω)

ds
=

dL−(ω) + dL+(ω)

ds
= −ρ · (σa + σs) · L(ω) + ρ · σs

∫

4π
p(ω′, ω) · L(ω′)dω′, (2.17)

for non-emissive participating media. In general, there is no analytic closed solution to

this differential equation [Ishimaru, 1978; Hanrahan and Krueger, 1993]. However, analytic

solutions exist for some special cases.

One important case is the solution for single scattering. As shown in Figure 2.3, single

scattering means that the photons of the incident light will at most scatter once in the

participating medium before they arrive at the receiver.1 In contrast, multiple scattering

1This definition is the same as the “first-order multiple scattering” defined in [Ishimaru, 1978, Chapter4].



CHAPTER 2. BACKGROUND AND OVERVIEW 18

Source Receiverabsorption

ab
so
rp
tio
n

absorption

(a) Single scattering

Source Receiver

(b) Multiple scattering

Figure 2.3: A schematic diagram of single scattering and multiple scattering, excerpted

from [Ishimaru, 1978, Chapter 4].

means multiple scattering events in the participating medium. Both single scattering and

multiple scattering exist for almost all participating media. However, if the particles in a

medium are tenuously distributed, or in other words optically thin, single scattering will

become dominant. There is no known consensus about the definition of optically thin. In

this thesis, we adopt the definition in [Ishimaru, 1978, Chapter 8-1] where an optically

thin layer of participating medium (for which multiple scattering is negligible compared to

single scattering) needs to satisfy: (1) the optical thickness is small, i.e., τ ≤ 0.4; and (2)

the particles are mostly absorbing, i.e., W0 ≤ 0.5. Examples of single scattering include

thin fog and haze, sea water, and thin dust layer. For other participating media with large

optical thickness or high scattering, the models and conclusions derived for an optically thin

layer are often the first-order approximations of the actual scattering phenomena.

Table 2.1 summarizes the symbols, the definitions and the units for the above quantities

(“n/a” means dimensionless).

2.2 A Taxonomy of Appearance Modeling

Based on the physical quantities defined in the previous section, many extensions have

been proposed recently for appearance modeling in computer graphics. We summarize

recent work into a taxonomy, as shown in Figure 2.4. In this section, we walk through the

taxonomy and establish the context for our work on time-varying appearance.

Theoretically, to fully characterize the appearance of a scene, we need to use the plenop-

tic function [Adelson and Bergen, 1991], which is a function of a 3D position (x, y, z), at a
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Table 2.1: Commonly used symbols in appearance modeling.

Symbol Unit Definition

L W · m−2 · sr−1 Radiance

E W · m−2 Irradiance

ω sr Solid angle or direction (θ, φ)

f(ωi, ωo) sr−1 BRDF

n n/a Refractive index

kd sr−1 Diffuse reflectance

ks sr−1 Specular reflectance

σ n/a Surface roughness

ρ m−3 Density of particles

σa m2 Absorption cross section

σs m2 Scattering cross section

µa m−1 Absorption coefficient, µa = ρ · σa

µs m−1 Scattering coefficient, µs = ρ · σs

ℓ m Mean free path, ℓ = 1/ (µa + µs)

W0 n/a Albedo (scattering albedo)

τ n/a Optical thickness (optical distance)

p(ω′, ω) sr−1 Phase function
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given direction (θ, φ), at a given wavelength λ at a given time t,

L(x, y, z, θ, φ, λ, t). (2.18)

Therefore, in order to characterize the appearance of a scene under arbitrary lighting and

viewing conditions, the most general scattering function has 14 dimensions, with 7 dimen-

sions for each incoming and outgoing direction:

f(xi, yi, zi, θi, φi, λi, ti;xo, yo, zo, θo, φo, λo, to). (2.19)

This is shown as the root of the taxonomy in Figure 2.4.

2.2.1 Modeling Static Appearance

Let us first focus on existing work on static appearance. Starting from the top root level,

we first omit the spectral λ and time t, and consider appearance at a given moment in RGB

channels only. Since in a free space with no participating media the radiance of light is

conserved along the path of light, the spatial variable can be reduced from (x, y, z) to (x, y).

With these simplifications, the 14D function is simplified as an 8D scattering function:

f(xi, yi, θi, φi;xo, yo, θo, φo). (2.20)

This 8D function is also known as the light transport matrix. Let us denote x = (x, y)

and ω = (θ, φ), the 8D function can also be written as f(xi, ωi;xo, ωo). This 8D function is

usually sparse, and some recent work measured the 8D function based on the sparsity [Peers

et al., 2009] and symmetry [Garg et al., 2006].

The eight variables are grouped into two spatial variables, xi and xo and two angular

variables, ωi and ωo. Many previous studies in computer graphics fix one or two variables

and further simplify the model. For example, if the light interaction is assumed to be

localized (i.e., surface appearance), we have xi = xo = x and the 8D transport function

becomes spatially-varying BRDF [Lawrence et al., 2006] and bi-directional texture function

(BTF) [Dana et al., 1999]. It can further be simplified to the 4D BRDF function as defined

above. For isotropic reflection, the BRDF can be further simplified to a 3D function,

f(θi, θo, φi − φo).
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General scattering function (14D)
f(xi, yi, zi, θi, φi, λi, ti;xo, yo, zo, θo, φi, λo, to)

BSSRDF (8D)
f(~xi, ~ωi; ~xo, ~ωo)

where ~x = (x, y), ~ω = (θ, φ)

SV-BRDF/BTF (6D)
f(~xi, ~ωi; ~ωo)

Relighting (near-field light) (6D)
f(~xi, ~ωi; ~xo)

6D display (6D)
f(~xi; ~xo, ~ωo)

BRDF (4D)
f(~ωi; ~ωo)

Incident light field (4D)
f(~xi, ~ωi)

Surface light field (4D)
f(~xo, ~ωo)

Relighting (distant light) (4D)
f(~ωi; ~xo)

Subsurface (Heterogenous) (4D)
f(~xi; ~xo)

Isotropic BRDF (3D)
f(θi, θo, φi − φo)

Environment map (2D)
f(θ, φ)

Texture (2D)
f(x, y)

TSV-BRDF (7D)
f(~x, ~ωi; ~ωo; t)

TV-BRDF (5D)
f(~ωi; ~ωo; t)

Light field display (5D)
f(~xo, ~ωo; t)

Dynamic texture (3D)
f(x, y; t)

Figure 2.4: A taxonomy of appearance modeling.a

aThis taxonomy is based on the course note by Szymon Rusinkiewicz and Ravi Ramamoorthi.
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If we omit one of the angular variables, for example, ωo, we will have a 6D function

f(xi, ωi;xo). This corresponds to image relighting with near-field lighting [Unger et al.,

2003; Masselus et al., 2003], i.e., 4D incident light field. There are several important subsets

of this 6D function, as shown in Figure 2.4. For example, f(ωi;xo) means the traditional

image relighting under distant lighting [Nayar et al., 2004], i.e., 2D environment map.

By ignoring the two angular variables but taking into account the two spatial variables,

Peers et al. [2006] proposed a 4D function f(xi;xo) to describe heterogeneous subsurface

scattering for materials such as wax or marble. The third 4D function is the 4D incident

light field, f(xi, ωi), which was introduced in computer graphics by Levoy and Hanrahan

[1996]; Gortler et al. [1996] and is now widely used for view interpolation and other special

effects. The 4D incident light field can be further simplified by fixing either the angular

variable to be a 2D texture function, or the spatial variable to be a 2D environment map

for distant lighting [Blinn and Newell, 1976; Miller and Hoffman, 1984]

If we omit the other angular variables, for example, ωi, the corresponding 6D function

f(xi;xo, ωo) represents the outgoing light field caused by a directional light source. Imagine

a film is illuminated with a programmable projector from behind and is viewed at different

angles, its appearance can be described by this 6D function. Based on this concept, Fuchs

et al. [2008] have implemented a prototype 6D display. If the incident light is fixed, this

6D function is simplified as a 4D surface light field [Wood et al., 2000] which describes the

light field reflected from object surfaces.

2.2.2 Modeling Time-Varying Appearance

In theory, all the concepts for static appearance can be simply extended for time-varying

appearance by adding one time variable t. Figure 2.4 lists some examples. The time

and space-varying BRDF (TSV-BRDF) introduced in Chapter 3 (TSV-BRDF) is a 7D

function f(x, ωi;ωo; t). Sun et al. [2006] studies time-varying BRDFs for paint drying and

dust accumulation. In Chapter 4, we investigated the reflectance models for weathered

transparent surfaces, which also belong to time-varying BRDF. Recently, some researchers

developed novel display devices that can change the appearance over time. For instance,

Jones et al. [2007] developed a dynamic light field display. Weyrich et al. [2009] and Matusik
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et al. [2009] proposed ways to manufacture surfaces with designed surface reflectance.

As we can imagine, the temporal variations impose significant challenges for the study

of these appearance phenomena. First, the acquisition must be efficient enough so that

within the time of acquisition for the appearance at one moment, the appearance will not

significantly altered. Second, since both the spatial and temporal variations need to be

taken into account, we have to find compact models and representations for the appearance

phenomena, for the purpose of either synthesizing time-varying appearance in a flexible and

controllable way or reversing the weathering effect from captured images. In the remaining

chapters, we will show how we address these problems for time-varying appearance on

opaque surfaces, transparent surfaces, and dynamic participating media.
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Chapter 3

Time-Varying Appearance for

Opaque Surfaces

In this chapter, we studied the time-varying appearance of opaque surfaces for a range of

natural phenomena. For opaque surfaces, their time-varying appearance is mainly due to

the change in their reflectance function. We presented a complete pipeline from acquisition

to modeling and to rendering.

3.1 Introduction

As discussed in Chapter 2, to fully characterize time-varying reflectance, one can imagine ex-

tending common appearance concepts, such as the BRDF or texture to include an additional

time dimension. In this chapter, we extend Spatially-Varying BRDFs (SV-BRDFs) to Time

and Space-Varying BRDFs (TSV-BRDFs). A general TSV-BRDF, f(x, y, θi, φi, θo, φo, t),

is a function of 7 dimensions — 2 each for spatial location, incident angle and outgoing

directions, and 1 for time variation. For highly rough surfaces with large surface reliefs

(e.g., tree bark), the term Bi-Directional Texture Function (BTF) [Dana et al., 1999], and

its time-varying extension TBTF are more appropriate. TBTF has the same dimensionality

of TSV-BRDF but it includes inter-reflection, shadow, and masking. In this thesis, we focus

primarily on flat surfaces or TSV-BRDFs.

A few previous works have studied some subsets of this 7D function. Sun et al. [2006]



CHAPTER 3. TIME-VARYING APPEARANCE FOR OPAQUE SURFACES 25

studied time-varying BRDF, which is a 5D function without considering the spatial varia-

tion. Physical simulation has been employed for rendering the appearance resulting from

several specific weathering processes [Dorsey et al., 1996; Dorsey and Hanrahan, 1996;

Dorsey et al., 1999]. A few data-driven studies have been conducted for measuring and

synthesizing time-varying textures [Koudelka, 2004; Lu et al., 2005, 2007] for a fixed light-

ing and view.

In contrast, our work is intended to perform a systematic data-driven study of the full 7D

time-varying surface appearance, including a broad range of natural phenomena. Our work

starts with acquiring data in the 7D space. Our goal is to find a compact representation

for the acquired high dimensional data, which not only reproduces the measured data, but

also gives the flexibility to create novel renderings. Our data-driven approach generalizes

and complements physical simulation of specific phenomena, much as static data-driven

reflectance models [Matusik et al., 2003; Dana et al., 1999] complement and extend specific

physically-based analytic BRDFs.

3.2 Acquisition and Database

To develop an easy yet uniform way to acquire the full 7D TSV-BRDFs for a range of

dynamic natural phenomena, we must consider the following two challenges:

• First, dynamic natural phenomena can have very different speeds in evolution, and

we need proper control for each one. While some natural processes like drying occur

over fairly short time scales (a few minutes), many others occur over a considerable

duration under normal circumstances (several hours to days for decay of fruit skins, or

a few months for corrosion of metals). In the case of burning and charring, we used a

heat gun to carefully control the process. At each time interval, we uniformly heated

the sample for a fixed duration of time (typically 30 seconds). For metal corrosion,

we decided to speed up the process using specially prepared solutions [Hughes and

Rowe, 1991]. We sprayed a chemical solution before each measurement and waited

a few hours. Decay of organic samples takes several hours, and is fairly difficult to

speed up — we decided to measure these processes without alteration.



CHAPTER 3. TIME-VARYING APPEARANCE FOR OPAQUE SURFACES 26

Lights

Cameras
Sample

Figure 3.1: A photograph of the multi-light multi-camera dome used for the acquisition of

the time-varying surface appearance database.

• A second difficulty is to design and build a measurement system that meets the follow-

ing resolution requirements: (1) Spatial resolution — acquired samples should have

at least 400×400 pixels. This means that the size of the imaging sensor has to be

significantly larger (e.g., at least one mega pixel) — it is usually difficult fit a sample

perfectly into an image from different viewing directions. (2) Dynamic range — many

of the processes (e.g., drying or rusting) involve significant changes in specularity. (3)

Light and view direction resolution — the sampling of the light and view directions

should be sufficiently high to capture specular materials. (4) Temporal resolution —

a complete acquisition at each time step, involving images with multiple lights, views

and exposure settings needs to be conducted in a few seconds to avoid the sample

changing significantly over this time. This rules out gantry-based systems, such as

the spherical gantries at Stanford [Levoy and Hanrahan, 1996] and Cornell [Marschner

et al., 2005] that typically can acquire very high quality and precisely calibrated im-

ages but take a few seconds to acquire even a single image.
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We decided to use a multi-light multi-camera dome as shown in Figure 3.1. The dome

skeleton is based on an icosahedron. We used 16 Basler cameras (resolution 1300×1030

pixels) placed on the icosahedron vertexes and 150 white LED light sources spaced evenly

on the edges (approximately 80 of these lights lie in the visible hemisphere with respect

to the flat sample, and therefore give useful images). This design is similar to the light

stage [Debevec et al., 2002], but includes multiple cameras as well. The cameras and light

sources were synchronized using a custom-built controller. The cameras were geometrically

calibrated by moving a small LED diode in the working volume and detecting its 2D location

in all cameras. A bundle adjustment was performed to obtain the precise geometric location

and projection matrices for all cameras. We also performed a photometric calibration of

the system, by capturing images of a perfectly white diffuse standard (spectralon) from all

camera viewpoints under all light combinations. To obtain normalized BRDF values for

each surface point, we divided each captured image by the corresponding observation of the

white diffuse standard.

For acquisition, we placed a prepared sample (as close as possible to planar surfaces) in

the center of the dome. At each time step, we captured a high dynamic range data set —

we took images at two different exposures (typically 2 and 82 msec) for each light-camera

pair — in total 4,800 photographs captured in 22 seconds. It took about 90 seconds to

save the data to the hard disk. Therefore, the minimum time between two consecutive

measurements was about 2 minutes. We typically captured 30 time frames for each sample.

Once a complete time-varying appearance data set was captured, we re-sampled the data

on a uniform grid (typically 400×400 pixels) for each light and view direction. Some of the

measured data are listed in Figure 3.3, showing time variations for a single light source and

view.

We have acquired 28 samples in total, covering five categories — burning and charring

(wood, waffles), drying of smooth surfaces (wood, fabric), drying of rough surfaces (rock,

granite), corrosion and rusting (steel, copper), and decay and ripening (apples, banana).

Table 3.1 presents a list of the acquired samples and the corresponding sampling time.

Figure 3.2 shows some examples of the database for their variations across time for a

single light source and view. Figure 3.3 shows the acquired images for two separate views
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Table 3.1: Description of the TSV-BRDF database, grouped into categories.

Type Sample Image Size Time Frames Time Interval (m)

Burning

Charred Wood 1 (#9) 512 11 2.1

Charred Wood 2 (#40) 480 31 9.9

Waffle Toasting (#41) 220 30 6.3

Bread Toasting (#42) 260 30 5.9

Drying

(Smooth

Surfaces)

Light Wood 1 (#29) 420 14 3.1

Light Wood 2 (#23) 300 34 2.3

Orange Cloth (#22) 512 33 4.9

Cotton Cloth (#30) 420 30 11.3

Pattern Cloth (#34) 420 32 4.8

White Felt (#24) 300 28 4.4

Drying

(Rough

Surfaces)

Dark Wood 1 (#21) 300 23 3.8

Dark Wood 2 (#36) 280 34 4.0

Paper Towel (#25) 300 32 7.0

Brick (#27) 260 32 22.1

Rock 1 (#19) 512 12 2.1

Rock 2 (#20) 360 11 2.0

Cardboard (#26) 420 29 7.0

Granite (#37) 340 27 2.6

Tree Bark (#38) 180 11 3.4

Corrosion

Rusting Steel 1 (#32) 300 30 7.3

Rusting Steel 2 (#43) 460 35 10.8

Cast Iron Rusting (#45) 460 30 13.9

Copper with Patina (#44) 460 34 31.6

Decaying

Apple with Core (#28) 180 33 9.6

Apple Slice (#35) 156 13 3.0

Banana (#31) 220 33 11.3

Potato (#39) 200 31 8.3

Leaf under Humid Heat (#33) 300 30 12.6
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        t=0.0            t=1.8 m            t=3.8 m            t=5.6 m            t=7.3 m            t=8.9 m           t=10.4 m         t=14.9 m

        t=0.0            t=8.1 m            t=11.7 m          t=14.5 m          t=17.4 m         t=20.0 m         t=25.6 m         t=36.4 m

        t=0.0             t=0.9 h             t=1.6 h             t=2.3 h             t=3.0 h             t=3.8 h            t=4.4 h             t=5.1 h

       t=0.0              t=14.5 m        t=25.9 m           t=53.2 m        t=67.3 m           t=84.0 m         t=97.2 m        t=110.0 m

       t=0.0               t=1.0 h             t=2.4 h            t=4.4 h           t=6.5 h             t=8.9 h             t=11.4 h           t=13.7 h

time

Figure 3.2: Some examples of the TSV-BRDF database, shown here with variation across

time (in minutes m or hours h) for a single light source and view. We acquired images from

1280 light and view directions at each time step — some of these images are shown for one

of the samples in Figure 3.3.
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and time instances of the wood-drying sample. This database has been released online at

http://www.cs.columbia.edu/CAVE.

3.3 TSV-BRDF: Non-parametric vs. Parametric

Once we acquired the database of time-varying surface appearance for certain lighting and

view directions, the first desirable control is to smoothly vary lighting and view directions.

Initially, we attempted to take a straightforward non-parametric approach to represent the

BRDF at every point directly by the acquired raw data. For rendering we used the algorithm

in [Vlasic et al., 2003] and did barycentric interpolation twice, once over view and then over

lighting. However, as shown in Figure 3.4, because of limited sampling of the lighting and

view directions, barycentric interpolation produces artifacts, especially at the boundary of

shadow and the highlight regions.

Fully capturing the precise shape of sharp specularity at every point requires a large

number of light sources and views that is not affordable for a database of time-varying

surface appearance. Instead, we took the parametric approach, i.e., fitting parametric

reflectance models to each spatial location at each time step for all the samples, including

specular lobes. While we might lose some subtleties by using a parametric model, this

provides a practical solution for handling insufficient samples in a high-dimensional space

and a compact representation that is directly usable for real-time or off-line rendering, as well

as in further factorization and mathematical models of time-varying appearance. We used

a simple combination of diffuse Lambertian and simplified Torrance-Sparrow reflectance,

with the BRDF given by

f(ωi, ωo;x, y, t) = kd(x, y, t) +
ks(x, y, t)

4(ωi · N)(ωo · N)
exp

[

−

(

cos−1 (ωh · N)

σ(x, y, t)

)2
]

, (3.1)

where ωi and ωo are incident and outgoing directions, N is the surface normal and ωh is the

half-angle vector. The BRDF parameters are the diffuse intensity kd, the specular intensity

ks and the surface roughness σ. Since kd is an RGB color, we have a total of five parameters

for each spatial location (x, y) and time t. We use the notation p(x, y, t) for the parametric
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Figure 3.3: Acquired images of wood drying and steel rusting. We show two separate

views/time instances, and 80 frontal lighting directions (i.e., ωi · N > 0) for the two time-

varying samples.
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Figure 3.4: Rendering of TSV-BRDF with (a) barycentric interpolation or (b) parametric

BRDF models. Compared with the barycentric interpolation, rendering with fitted para-

metric BRDF models generates more natural and accurate results, preserving the fine details

of the wood grain, while eliminating artifacts in the highlights and boundaries.

fits to the TSV-BRDF

p(x, y, t) =











kd(x, y, t)

ks(x, y, t)

σ(x, y, t)











,

which is a vector of the five parameters. The angular dependence is implicit in the form

of the specular term controlled by ks and σ. We note that the BRDF model used to fit

the raw data is independent of the STAF model in the remaining sections. Other kinds of

parametric BRDF models could also be used if appropriate.

The diffuse and specular parameters are estimated separately in two steps, since for

some materials there are only a few samples in the specular lobe. To fit the diffuse color

kd, we consider a frontal view with the highest resolution. At each spatial location, we

average over only those light source directions where specular highlights are not present —

conservatively, we require the light source and the reflected view directions to be separated

by at least 30◦ — it works well for most of the samples in the database. We consider each

time frame separately for the fitting.

Once kd was estimated, we fitted the specular intensity ks and the surface roughness σ by

minimizing the ℓ2-norm of the difference between the measured data and the model-based
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( ) 0Lϕ = � ( ) 120Lϕ = �
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Figure 3.5: This example demonstrates a simple rendering with the TSV-BRDF database,

which enables us to render with simultaneous changes in lighting and evolution with time.

Note the diffuse spatial drying patterns, and the early dimming and diffusing of specularity.

The elevation angle of the light with respect to the center is fixed at θ(L) = 30◦, while the

azimuthal lighting angle varies as the sample dries.

BRDF at all sampled lighting and view directions for each point:

min
ks,σ

∑

(ωi,ωo)

‖f0(ωi, ωo) − f(ωi, ωo; kd, ks, σ)‖2, (3.2)

where f0(ωi, ωo) is the measured BRDF. For the optimization, we found it more robust to

estimate σ with a linear search. For a given σ, we solve a linear system for ks. The optimal

σ and ks were found with the minimum error.

As seen in Figures 3.4 and 3.5, we captured the important qualitative aspects of the

specularity, without artifacts. For quantitative results, Figure 3.6 shows the means and the

standard deviations of the Normalized Root Mean Square Error (NRMSE) of BRDF fitting

for each of the 28 samples across all spatial locations and all time frames. As shown in the

bar graph, for most samples in the database, the averaged NRMSE is less than 7%, which

demonstrates the accuracy of the BRDF fitting. Appendix D lists the averaged NRMSE at

different time frames for each of the 28 samples.

This parametric representation also reduces the size of the database. The average size

of the raw data of one sample is about 30 GB. Fitting BRDF models for each time step

will reduce the size to about 80 MB. With this parametric representation, our database

of TSV-BRDFs can be texture-mapped onto arbitrary 3D objects and used directly for

rendering with general lighting direction, viewing angle, and time variation. Indeed, our

use of standard parametric models allows time-varying effects to be easily incorporated
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Figure 3.6: Average NRMSE for fitting measured TSV-BRDF data to the parametric

model. The bar graph shows the means and the standard deviations of the NRMSE of

BRDF fitting for each of the 28 samples across all spatial locations and time frames. The

plot shows that most samples have the averaged NRMSE less than 7%.

in almost any interactive or off-line rendering system. As one example, Figure 3.5 shows

drying wood texture-mapped onto a sphere. We show a sequence of frames, where we

simultaneously change the lighting, and evolve the sample over time. Note the spatial

drying patterns, as well as BRDF changes, wherein the initial sharp specularity quickly

diffuses and dims over time.

3.4 Space-Time Appearance Factorization

While the fitted TSV-BRDFs are easy to use for rendering, they can only reproduce the

captured data. There are many rendering applications where the user desires more controls

to create novel renderings. For example, one may want to control the spatial drying patterns

on a wooden floor to dry slower near recent wet footprints. Or one may want to remove the

spatial drying patterns altogether allowing the surface to dry uniformly. The user might

also want to change the underlying spatial texture, to create a different appearance for

the wood grain. In order to obtain such flexibility in rendering, we hope to find a more

compact model that can intuitively factorize the high-dimensional time-varying appearance

into lower-dimensional, independent components for editing and controls.
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3.4.1 The Model and Its Implications

The model we found is called Space-Time Appearance Factorization (STAF) model, which

separates the spatial and temporal variations from TSV-BRDFs. In this section, we intro-

duce the STAF model, explain the physical meaning of its components, and show how to

estimate it from the TSV-BRDF. We also present results indicating its accuracy for the

large variety of time-varying phenomena in our database.

The STAF model is based on the observation that many physical processes have an

overall temporal behavior associated with them. For example, drying wood often gets lighter

over time. However, different points can dry at different rates and with different offsets. For

example, the points in a puddle start out wetter than others. Intuitively, we seek to align

the time variations for different spatial locations, represented as p(x, y, t), by deforming a

single temporal characteristic curve φ(t) according to spatially-varying parameters for rate

R(x, y) and offset O(x, y). The proposed model is formulated as

p(x, y, t) = A(x, y)φ(t′) + D(x, y)

t′ = R(x, y)t − O(x, y). (3.3)

As mentioned earlier, p(x, y, t) is a vector of five parameters (kd, ks, σ), and thus this

equation is applied to each of the five parameters separately. This model is a data-driven

nonlinear model, in which the factors A, D, R, O and φ are estimated directly from the

acquired data. We now describe the meanings of the various terms.

φ(t′) — Temporal Characteristic Curve: The overall time variation characteristic of

the physical process is captured by the curve φ(t′). The form of φ(t′) can vary with the

specific phenomenon. It could be exponential for some decays, sigmoid for drying and

burning, a more complex polynomial form for rusting, or any other type of curve. Since

our representation is data-driven, we can handle a variety of effects. In fact, one of the

advantages of this data-driven model is that it can extract the overall temporal trends for

different types of natural phenomena from captured data without knowing the physical

mechanisms. We discuss this point in detail below.
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R(x, y) and O(x, y) — Spatial Rate and Offset: Different spatial locations evolve

differently. For example, regions close to a light source may dry faster. Some areas may

also start out drier than others. We capture these effects with spatially varying rate R(x, y)

and offset O(x, y) parameters. If R(x, y) is large, the rate of change will be rapid. If O(x, y)

is positive, the point will start from an earlier state. The effective time t′ for a given point

is given by t′ = R(x, y)t − O(x, y), where we refer to t as the global time.

A(x, y) and D(x, y) — Static SV-BRDFs: A(x, y) and D(x, y) are static over time.

The diffuse components correspond to standard spatial textures (e.g., wood-grain) that

remain fixed throughout the time variation. Consider the special case when R(x, y) = 1

and O(x, y) = 0 so all points evolve in the same way. Equation (3.3) becomes A(x, y)φ(t)+

D(x, y). In this case, we simply interpolate from one texture (or more generally, SV-BRDF)

to another with a weight φ(t). Therefore, A(x, y)φ(0) + D(x, y) can be interpreted as the

“initial” appearance with A(x, y)φ(1) + D(x, y) being the “final” appearance.

We later found that the STAF model actually belongs to a family of the so-called shape

invariant model which was first proposed by Lawton et al. [1972] and has been extensively

studied in statistics for self-modeling nonlinear regression. The shape invariant model and

its variations have also been successfully applied for analyzing medical data such as hu-

man height growth [Stützle et al., 1980; Kneip and Engel, 1995; Beath, 2007] and circadian

rhythms [Wang et al., 2003]. A more general statistical method for analyzing the similar-

ity between measurements is called dynamic time warping, which was originally proposed

by Sakoe and Chiba [1978] to find the transformation between two speech signals. While

the dynamic time warping was originally designed for discrete signals (which was solved via

dynamic programming), it was extended by Wang and Gasser [1997, 1999] for continuous

functions, which is solved via nonlinear optimization.

In our work, the goal is to align time-varying appearance curves (i.e., time-varying

BRDFs) at different spatial locations. The STAF model provides an intuitive way to analyze

the statistical correlations between the temporal variations at different spatial locations. Its

advantages are summarized as follows.
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Separating Spatial and Temporal Variation: The STAF model in Equation (3.3)

has factored spatial and temporal variation in a compact representation. The quantities

(A,D,R,O) depend only on spatial location (x, y), and the temporal characteristic curve

φ(t′) only relates to time. Unlike linear decompositions, the STAF model is non-linear,

because φ(t′) is stretched and offset by the spatial rate and offset R(x, y) and O(x, y). A

similar separation of spatial and temporal effects could not be accurately achieved by linear

data reduction methods like PCA, nor would the terms in a linear model correspond to

physically intuitive and editable factors.

Statistical Learning of the Overall Temporal Trends: One of the main obstacles in

physical simulation is that for many complex natural phenomena, it is difficult to understand

the underneath physical or chemical mechanisms and to design the simulation properly. The

STAF model provides an intuitive way to learn the overall temporal trends (i.e., the overall

temporal curve φ(t)) from the measured samples statistically. These learned trends can be

used either to guide the design of the physical simulation or as an experimental verification

for the derivations from first principles. For example, as shown in Figure 3.7, for the wood-

drying process, the estimated overall temporal curve φ(t) is similar to a sigmoid curve. This

is consistent both with the measured temporal appearance for the drying of stone [Lu et al.,

2005] and the analytic derivation of the drying of wood [Jankowsky and Dos Santos, 2004].

Extrapolation: Another interesting aspect of the STAF model is its power to extrap-

olate beyond the time range of the acquired sequence. Let us normalize the global time t

in the range of [0 . . . 1]. Consider the effective time t′ = R(x, y)t − O(x, y), which lies in

the range J(x, y) = [−O(x, y), R(x, y) − O(x, y)]. If either R(x, y) and/or O(x, y) is large,

this range can extend considerably beyond the global [0 . . . 1] time. The valid domain of

effective times for the full curve φ(t′) is now

J =
⋃

(x,y)

J(x, y) =

[

min
(x,y)

(−O(x, y)) ,max
(x,y)

(R(x, y) − O(x, y))

]

, (3.4)

which considers the minimum and maximum effective time t′ over all points (x, y). By

definition, the overall range of J is a superset of that for each point, enabling individual
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pixels to be backed up or extended beyond the sequence captured, allowing time extrapo-

lation. Intuitively, this is plausible because early-starting points could provide information

for other similar points which start later by some offset.

3.4.2 An Iterative Factorization Algorithm

We use a simple iterative optimization to estimate the factors in Equation (3.3). Each

iteration consists of two steps. In the first step, we fix the spatial parameters A(x, y),

D(x, y), R(x, y) and O(x, y) and update φ(t′) according to Equation (3.3). In the second

step, we fix φ(t′) and update A(x, y), D(x, y), R(x, y) and O(x, y) — this step requires

non-linear optimization, but can be carried out separately for each spatial location (x, y).

The details of the iterative algorithm are given below.

Initialization: Our inputs are discrete fits of the parameters p(x, y, t) at pixels i and

times j, which we denote pi(tj). The pixel i corresponds to the spatial location (xi, yi). For

each pixel, we construct a continuous curve pi(t) using the kernel-based method [Gasser

et al., 1985]. Splines or local polynomial fitting can also be used. We are now ready to

begin our iterative optimization. To initialize, we set Ai = 1, Di = 0 and Ri = 1, Oi = 0

for all pixels.

Step 1 — Estimating φ(t′): In each iteration, we first fix the spatial parameters A, D,

R, O to estimate φ(t′). We re-arrange Equation (3.3), writing t = (t′ +Oi)/Ri, and we have

Aiφ(t′) + Di = pi

(

t′ + Oi

Ri

)

φ(t′) =
pi ((t

′ + Oi)/Ri) − Di

Ai
, (3.5)

for pixel i where t′ ∈ Ji, where Ji is the range of the effective time for pixel i defined

as Ji = [−Oi, Ri − Oi]. For robustness, and to consider the full effective time range, the

estimate of φ(t′) is computed as the average of multiple points,

φ(t′) =

∑

i:t′∈Ji
pi((t

′ + Oi)/Ri) −
∑

i:t′∈Ji
Di

∑

i:t′∈Ji
Ai

. (3.6)
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Step 2 — Estimating A, D, R, O: We now fix the overall time curve φ(t′) and estimate

the four spatial parameters for each pixel. We formulate it as the following optimization

problem for pixel i

min
∑

tj∈J

‖pi(tj) − Aiφ (Ritj − Oi) − Di‖
2, (3.7)

where J is the support of the curve φ(t′). Note that this expression uses the discrete

observations pi(tj), finding spatial parameters that best match our input data. This is a

nonlinear least-squares optimization problem, and we use the lsqnonlin function in Matlab,

with Levenberg-Marquardt minimization.

Step 3 — Normalization: Before we start a new iteration, we need to normalize the

estimates. This is because the STAF model involves a product, and requires normalization

of the factors for uniqueness. We perform the following normalization

1

N

N
∑

i=1

Ai = 1,
1

N

N
∑

i=1

Di = 0,

1

N

N
∑

i=1

Ri = 1,
1

N

N
∑

i=1

Oi = 0, (3.8)

where N is the total number of pixels. This simply says that the overall spatial textures

need to be normalized so that the average rate is 1, while the average offset is 0. Suppose

the the output of Step 2 (without normalization) are Âi, D̂i, R̂i and Ôi. The normalization

is performed as follows:

Ai =
N

∑N
j=1 Âj

Âi, Di = D̂i −
Ai

N

N
∑

j=1

D̂j ,

Ri =
N

∑N
j=1 R̂j

R̂i, Oi = Ôi −
Ri

N

N
∑

j=1

Ôj . (3.9)

We can now start the next iteration of the optimization, returning to Step 1, until the

averaged fitting error is sufficiently small.

Efficiency and Robustness: For efficiency, instead of using all the points on a sam-

ple, we (uniformly) randomly sample 400 points as the input to the iterative algorithm.

Therefore, the iterative optimization itself takes only a few minutes. Once the final φ(t′)
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is known, Step 2 (Equation (3.7)) is used to estimate A,D,R,O for all the points in full

resolution. Since the average image size for each sample is large (400 × 400), and we must

solve a nonlinear optimization for each pixel, this estimation can take a few hours, but the

process is completely automated.

One difference between this estimation of the STAF model and existing algorithms for

the shape invariant model and dynamic time warping is that we seek to estimate φ(t′)

in the full range J =
⋃

i Ji rather than the overlap range
⋂

i Ji. This means in Step 2

(Equation (3.7)) we need to extrapolate both pi(t) and φ(t′). We found that the kernel-

based curve pi(t) and the estimated φ(t′) from Step 1 cannot extrapolate well directly.

Therefore, in Step 2 before the optimization, we fit φ(t′) with a smooth polynomial model

and use it to estimate A, D, R, and O.

Convergence: We are unable to perform a theoretical analysis on the convergence rate of

the iterative algorithm. Theoretical analysis for the convergence of shape invariant modeling

was performed by Kneip and Gasser [1988]. In practice, we found that for most samples in

our TSV-BRDF database, 5 ∼ 10 iterations are sufficient to obtain accurate estimates of all

parameters. Among the 28 samples in our database, there are three samples for which the

iterative algorithm does not converge. These three samples are drying of tree bark, waffle

toasting, and decaying of apple with core. For these samples, within the acquired sequence,

not only their surface reflectance, but their surface geometry have also changed.

3.4.3 Experimental Results

The top row of Figure 3.7 shows five samples, with three spatial locations marked on each.

The middle row shows curves for one of five BRDF parameters — the red diffuse component

— over time. Similar results are obtained for the other four parameters. As can be seen,

the curves from the three points for each sample are quite different, showing the difference

in their time-varying appearance in the captured data. In the bottom row, we show the

alignment of these separate time-varying curves by estimating the factored representation,

where the estimated φ(t′) is plotted in as the black curve. The horizontal axis is the effective

time, t′, while the vertical axis is the normalized function value (p(x, y, t)−D(x, y))/A(x, y).
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Figure 3.7: Estimating the factored representation. Top: A range of different phenomena,

with 3 spatial locations marked on each sample. Middle: Time-varying curves p(x, y, t) (for

the red diffuse component) for spatial locations A, B and C. The curves are quite different for

different points A, B and C. Bottom: We align these time-varying curves using our model.

The data accurately matches the temporal characteristic curve φ(t′) computed from all the

points on the sample. The overall RMS image reconstruction error (across all temporal

frames and spatial locations) is very low. This shows the generality of our model.
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The green/red/blue dots overlaid on the black curves show which portions of the black curves

φ(t′) correspond to each of the three original curves in the second row. Note that the φ(t′)

curves extrapolate beyond the data as expected, having a larger range of effective times

than [0 . . . 1].

If the model in Equation (3.3) could explain the measured data well, the curves from

different spatial locations should all be aligned after the warping, fitting the overall tempo-

ral curve φ(t′). Indeed, the time-aligned data in the bottom row of Figure 3.7 matches very

well to the overall temporal curve. The overall RMS image reconstruction errors are com-

puted across all temporal frames and spatial locations. The range of the image intensity is

generally in [0, 1], except for samples with strong specular components, such as the steel for

which the intensity of the specular pixels is in [0, 30]. Note that Figure 3.7 shows a variety

of phenomena, with a number of different data-driven forms and mathematical curve-types

for the overall temporal curve φ(t′).

The accuracy of our factored model is evaluated in Figure 3.8 for the wood-drying

example in our database. As shown in the top two rows, the STAF model accurately

reproduces the drying patterns in the original measured data. In the bottom row of Fig-

ure 3.8, in addition to the estimated overall temporal curves φ(t′) for the five parameters

for the TSV-BRDF, we also show the four estimated textures for the diffuse component

of the TSV-BRDF. Since A(x, y) and D(x, y) are harder to interpret directly, we show the

normalized initial appearance, A(x, y)φ(0) + D(x, y) and the normalized final appearance

A(x, y)φ(1)+D(x, y). In the absence of rate and offset effects, the TSV-BRDF interpolates

between these two SV-BRDFs, weighted by φ(t). We also show R(x, y) that controls the

rate at which different points dry. It corresponds closely with the spatial patterns observed

at later frames. Finally, we show the offset texture O(x, y). It is mostly close to 0, since

we wet our sample uniformly before starting acquisition. However, it does show small non-

uniformities and the slightly faster start to drying in the top left region. We also show

the diffuse and specular φ(t′) curves. The specular ks(t
′) decreases exponentially, changing

more rapidly than diffuse color.

One of the principal benefits of our factored representation is that it enables a variety of

rendering applications, as discussed in the next section. Figure 3.8 demonstrates a simple
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Original

Reconstructed

Time

Normalization

kd: AΦ(0)+D kd: R kd: Okd: AΦ(1)+Dtime

Φ(t): Diffuse

0 1

1 kd(R)

kd(G)

kd(B)

2

time

σ

0 1
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Figure 3.8: STAF factorization results for the drying wood sample. Top: the STAF model

can accurately reconstruct the acquired time-varying appearance, and can also be used

for time normalization wherein we keep the overall appearance changes but eliminate the

spatial drying patterns. Bottom: we show the estimated φ(t′) for both diffuse and specular

parameters and the estimated spatial “textures” A(x, y), D(x, y), R(x, y), and O(x, y).

In particular, we show the normalized initial appearance A(x, y)φ(0) + D(x, y), and the

normalized final appearance A(x, y)φ(1) + D(x, y).
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t=0 t=60.2m t=84m t=103.9m t=117m t=135.6m

Figure 3.9: Comparison of the original TSV-BRDF (texture mapped onto a sphere and

rendered) with the STAF model for several time frames for the rusting steel sample.

way in which we can separate space and time-varying effects by time normalization, making

all points on the surface evolve at the same rate and in effect removing the spatial patterns

formed over time. For this purpose, we leave A(x, y), D(x, y) and φ(t) unchanged, and set

O(x, y) = 0 to eliminate offsets and R(x, y) = 1 to eliminate differences in rates. More

flexible rendering applications are shown in the next section.

As another verification example, Figure 3.9 shows the renderings of the rusting steel

sample using the STAF model and the original TSV-BRDF. As shown, the STAF model

accurately reproduces the captured TSV-BRDF, which captures the dimming of the specular

highlight, and the intricate spreading of the spatial rust patterns over time.

In terms of compression, as mentioned earlier, the average size of the raw data (high

dynamic range images) of one sample is about 30 GB. Fitting parametric BRDF models for

each time step reduces the size to about 80 MB. The STAF model can further reduce the

size of one sample to about 6 MB on average — we only need to store four texture images

A(x, y), D(x, y), R(x, y), and O(x, y) and the curve φ(t) for each of the five parameters in

the TSV-BRDF model. Using other image compression techniques (e.g., JPEG), we can

reduce the size even further to about 1 ∼ 2 MB without producing noticeable artifacts.
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Input

t=0 t=7.5m t=10.6m t=14.8m t=21.2m

Figure 3.10: Time-varying texture synthesis can be reduced to 2D synthesis of static spatial

textures A(x, y) and D(x, y) with our model. We choose to preserve the overall drying

pattern from left to right in the original sample.

3.5 Synthesis of Time-Varying Surface Appearance

In this section, we show several applications to synthesize novel time-varying surface appear-

ance based on the STAF model. Since the STAF model factors the space and time-varying

effects, it allows us to edit and manipulate each term separately. The 3D renderings were

done using the PBRT package [Pharr and Humphreys, 2004]. To focus on the texture and

reflectance patterns and time variation, we mostly use simple geometry and lighting — it

is straightforward to generalize to more complex scenes and lighting/rendering algorithms.

Time-Varying Texture Synthesis: Our database is acquired on small flat samples. For

high quality rendering, we hope to synthesize larger time-varying samples. While there have

been many successful algorithms for synthesizing 2D textures, synthesizing time-varying

textures is quite challenging because there is usually no similarity over time (except for a

few phenomena with time repetition such as water falls or waves, which are not the subject

of this work). In other words, temporal coherence must be maintained during the synthesis.

The STAF model allows us to use standard 2D texture synthesis methods, such as image

quilting [Efros and Freeman, 2001], for creating larger time-varying textures.

Our method is to use image quilting to synthesize the initial and the final appearance,

I0(x, y) = A(x, y)φ(0)+D(x, y) and I1(x, y) = A(x, y)φ(1)+D(x, y), and keep the temporal

component φ(t′) unchanged. Given the synthesized initial and final textures I0(x, y) and

I1(x, y), we solve the two linear equations for the new A(x, y) and D(x, y). We can also

apply texture synthesis to the rate map R(x, y) and the offset texture O(x, y) in a similar
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Extrapolation

t=0.0m t=15.1m

+

t = -20.2 m t = -7.5 m t = 0.0 m t = 15.1 m

t=-20.2m t=-7.5m Originalt=36.4m t=60.3m

t = 36.4 m t = 60.3 m

Interpolation Extrapolation

Figure 3.11: Time interpolation and extrapolation: decaying Apple Records logo, using

our apple slice data set, and modulating by a static texture map of the logo from a Beatles

record. This example demonstrates extrapolation, wherein we back up the decay process

to considerably before actual start of acquisition—the decay is mostly complete at +30

minutes, and we back up to -20 minutes, getting a much greener look on the apple (we are

also able to extrapolate beyond the final time frame).

fashion. Once we have the synthesize components, the synthesized time-varying texture

p(x, y, t) is given based on Equation (3.3).

Figure 3.10 shows a texture synthesis result of the drying rock example. In this case

R(x, y) and O(x, y) are not textures in the conventional sense, but encode an overall varia-

tion over the surface, where the rock dries from left to right. Therefore in this example, we

choose to preserve this overall effect and simply enlarge R(x, y) and O(x, y) with scaling.

Extrapolation: The temporal characteristic curve φ(t′) extends beyond the actual global

time range over which the data is acquired, allowing us to back up or extend the process

beyond the acquired data for many pixels.

Figure 3.11 demonstrates extrapolation on the apple slice data set, to obtain virtual

frames even before the actual start of acquisition. We use a photograph of an Apple Record

logo to modulate the TSV-BRDF and create the effect of the cut apple logo decaying. For

extrapolation, we evaluate the STAF model at its overall minimum and maximum value
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t=0 t=0.4 t=0.7 t=1.0

R(x,y) O(x,y)

Figure 3.12: Footprints drying on a wooden floor. We use the drying wood data set,

controlling the rate and offset of drying as shown in the maps on the far right. Specifically,

the prints dry faster toward the edges, and the left footprint has a lower offset (higher

effective time) and so dries earlier.

as per Equation (3.4). In this data set, most of the decay actually happens in the first 30

minutes, and we use input from the corresponding 10 initial frames only for this figure. We

show a significant backing up of the process for many pixels up to t = −20m, to the point

where the apple is much greener.

Control: By changing rate and offset parameters R(x, y) and O(x, y), we can control the

rate at which different points on the surface change, while still preserving the characteristic

features of the time-varying process. For example, R(x, y) and O(x, y) can be designed by

artists to achieve desired effects, or be set according to some environmental context, such

as the amount of light or humidity.

Figure 3.12 shows how the drying wood can be controlled to create the appearance of

drying footprints on a wooden floor. We set the offset map O(x, y) so that the floor starts

out dry (i.e., O(x, y) = −1) and the lower left footprint dries earlier than the right (i.e., it

has a smaller offset O(x, y) = 0, compared to O(x, y) = 0.3 for the upper right footprint).

We also set the rate map R(x, y) to control the speed of drying, where R(x, y) is set higher

toward the edges and lower toward the center of the footprints. Specifically, we compute

the distance transform d(x, y) for points inside the footprint, and set R(x, y) ∼ d−1(x, y).

Finally, we use a 7 × 7 Gaussian filter on the resulting maps R(x, y) and O(x, y) to ensure

smooth transitions, especially at the edges. The rendered images in Figure 3.12 show the

desired effect.
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t=0 t=72.3m t=104.4m t=128.5m t=160.6m t=192.7m

(a)

(b)

(c) (d)
t=0 t=72.3m t=128.5m t=160.6m Original Transfer

Figure 3.13: Rendering of a rusting teapot. We transfer the rust TSV-BRDF to a new

static texture (shown at bottom right (d)). We show two views (a) and (b), with specular

and diffuse effects. The insets (c) in the bottom left show the effects of control, where edges

and high-curvature areas rust faster.
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t=0 t=30.7m t=92.1m t=184.2m t=306.9m

Figure 3.14: Creating ephemeral patterns by adjusting rates. The bowl uses the burning

wood sample, and the table is drying orange cloth. Control is provided by a virtual heat

source. We start with the static appearance, gradually evolving into the SIGGRAPH logo,

and then into a fully charred and dry state.

Transfer: By changing A(x, y) and D(x, y) to those obtained from a new static photo-

graph, we can transfer the time-varying animation, such as burning or rusting, to a new

static object, while still preserving the essence of the data-driven appearance change.

In Figure 3.13, we transfer the rusting steel time-varying process to a new (not rusty)

steel plate, using only a single image of its initial condition. The ratio of the new pho-

tograph Inew(x, y) to the first frame of the original sample I0(x, y) is used to modulate

both static textures Anew(x, y) = A(x, y) · Inew(x, y)/I0(x, y) and Dnew(x, y) = D(x, y) ·

Inew(x, y)/I0(x, y). We then texture-map the time-varying pattern onto a 3D teapot. Note

both the diffuse and specular effects as well as their temporal variations are preserved.

We also edit the rate map R(x, y) to increase the rate of rusting in high curvature

regions. In addition, we do edge detection on our static 2D image of the steel plate, to

increase the rate near edges. The net rate R(x, y) = κ(x, y)µ(x, y) where µ(x, y) is an edge

map and κ(x, y) is the average curvature. The insets in the bottom row show that different

parts of the object rust at different rates. We have full 3D rendering capabilities, and can

see the teapot from different viewpoints while the appearance is evolving.

Figure 3.14 shows how user-specified patterns can be created in the otherwise natural

time-varying processes, with implications for special effects and animations. We texture-

map the burning wood onto a bowl model; the table cover is from our drying orange cloth

data set. Control is effected through a virtual heat source, for both burning and drying. In

addition, we manually modify the rate R(x, y) to resemble the SIGGRAPH logo, for both
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the bowl and the cloth. As time progresses, the patterns gradually appear on the bowl and

table; when the charring and drying are complete, the patterns disappear.

Limitation: While the overall temporal curve φ(t) is rather independent with the four

spatial textures A(x, y), R(x, y), O(x, y), and D(x, y), there could be strong correlations

between some of these spatial textures for some time-varying samples, and therefore we

might not be able to control each of the four textures independently for some samples.

Often the correlation between A(x, y) and D(x, y) is strong since they control the initial

and final appearance of the sample. The correlation between A(x, y) (or D(x, y)) and

R(x, y) (or O(x, y)) is usually low for most samples, but for samples where the internal

material structure is important for the time-varying appearance (e.g., wood texture for

wood drying), the correlation could be strong.

Figure 3.15 shows the normalized correlation among these four textures for all the sam-

ples in the database for the diffuse component kd, the specular component ks, and the surface

roughness σ. We should take into account the correlations before we perform controls or

edits to the components.

3.6 Summary and Discussion

We have presented a complete pipeline from acquisition to rendering for time and space-

varying appearance or TSV-BRDFs. This leads to a new capability for computer graphics

imagery, to include the dynamic evolution of surfaces and scenes. Our contributions include

a newly acquired data set of time-lapse images for many natural processes from multiple

light source and viewing directions, along with estimated parametric TSV-BRDFs. Our

main technical contribution is a compact intuitive factored representation that separates

spatially varying aspects from temporal variation, being accurate for a variety of natural

phenomena. With this representation, we can generalize to a number of novel rendering

tasks such as transfer, control, extrapolation and texture synthesis.

There are some limitations for the STAF model. (1) Current STAF model assumes there

is one overall temporal curve for each sample. This assumption, however, does not hold for

some natural phenomena. One example is the decaying apple slice with core, where there
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Figure 3.15: Normalized correlation among the four textures A(x, y), D(x, y), R(x, y) and

O(x, y) for samples in the TSV-BRDF database, for the diffuse component kd, the specular

component ks, and the surface roughness σ. High correlation means we cannot control or

edit individual components separately. For most samples in the database, as expected, the

correlation between A(x, y) and D(x, y) is high while the correlation between A(x, y) (or

D(x, y)) and R(x, y) (or O(x, y)) is relatively low.
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are multiple types of time-varying processes occurring such as the decay of the fruit and

the core. Extending the STAF model to consist of multiple temporal characteristic curves

is one possible solution. (2) In our study, we have assumed flat surfaces and simplified

time-varying surface appearance as TSV-BRDF. For surfaces with large reliefs, such as tree

bark, the inter-reflection and shadowing between neighboring spatial locations need to be

taken into account explicitly using concepts such as time-varying BTF. These limitations

are the subjects of our future research.

The idea of time-varying surface appearance extends beyond the data sets and models

reported here. We currently represent the temporal characteristic curve φ(t′), which is

effectively the overall time-varying BRDF, in a purely data-driven way, without further

analysis. One of our future goals is to understand the time evolution of φ(t′), to develop

time-varying BRDF models that would form the time-varying counterpart of common static

BRDF models. In particular, we are interested in studying how the BRDF evolves with

time for transparent surfaces, such as windows, glasses, monitors, camera lenses, as the

surfaces accumulate dust, dirt and other types of contaminants over time. This subject is

discussed in detail in the next chapter.
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Chapter 4

Weathered Appearance for

Transparent Surfaces

In Chapter 3 we studied time-varying appearance for opaque surfaces. In this chapter, we

turned our focus to time-varying appearance for transparent surfaces.

4.1 Introduction

In our daily lives, we are surrounded by transparent surfaces such as windows, windshields,

monitors, reading glasses, drinking glasses, camera lenses, and mirrors. The rendering of

the effects produced by clean transparent surfaces has been widely studied, and today’s

advanced rendering techniques, such as [Jensen, 2001], are able to accurately and efficiently

render the most salient effects. However, rendered images of clean transparent surfaces tend

to look too perfect.

Figure 4.1 show both the state-of-the-art renderings of transparent objects and pho-

tographs of read transparent objects. As seen, transparent objects in the real world almost

always have surface contaminants such as dust (e.g., pollen, skin cells, fabric fibers), dirt

(e.g., powder, salt, other minerals, organic materials, soil), and lipids (e.g., fingerprints, lip-

stick, and other oils). These imperfections produce weathered appearance that implies the

objects went through real weathering processes and convinces us the images are real [Dorsey

and Hanrahan, 2000].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Top: Rendered images of transparent objects in previous work — (a) refraction

by ray tracing [Whitted, 1980]; (b) and (c) caustics and global illumination by photon map-

ping [Jensen, 2001]; and (d) interactive refraction [Wyman, 2005]. Bottom: Photographs

of transparent objects in the real world — (e) a window with dirt; (f) a wine glass with

stains; (g) an image taken with a dusty lens; and (h) a monitor with fingerprints. We note

that the contaminants on the transparent objects produce imperfections in appearance that

are important for image realism.
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While such weathered appearance may seem simple to create in computer graphics at

first glance (e.g., alpha-blending some dirt texture with a rendered image of a transparent

surface), it actually includes interesting scattering effects that require modeling of the light

transport on the transparent surface. For example, in Figure 4.1(e) the dirt looks darker

against the sky on the top, while it looks brighter against the ground on the bottom. In

Figure 4.1(f), the stains on the wine glass alter the light transport through the surfaces

and create an interesting soiled appearance. Dust on a camera lens scatters light from

outside the field of view of the lens to the image detector to produce lens glare, as shown

in Figure 4.1(g). Fingerprints or other contaminants become clearly visible on a monitor

screen when the monitor is off, as seen in Figure 4.1(h). The visual effects also vary with

viewing and illumination angles. For instance, contaminants on glass that are barely visible

in a frontal view become clearly visible when viewed from a grazing angle.

Theoretically, as shown in Chapter 2, one could use Monte Carlo to simulate exactly

the light transport and reproduce these effects by tracing a large number of photons scat-

tering on the weathered transparent surface. In practice, however, Monte Carlo simulation

often requires quite expensive computation and thus is not suitable for applications such as

computer games and design.

Matusik et al. [2002] performed a data-driven study to acquire and render transparent

objects with surface reflectance field, which achieves high realism but requires a complicated

measurement system. In this chapter, our goal is to develop an efficient way to add the realis-

tic weathered appearance on the rendering of transparent surfaces. We derived a physically-

based analytic model for the reflectance and the transmittance for weathered transparent

surfaces, based on the light transport theory in radiative transport theory [Chandrasekhar,

1960; Ishimaru, 1978]. The model captures many of the canonical visual effects common

in the real world, such as the contrast reversals of the contaminated regions against the

background, lens flare/blurring caused by stray light, and the angular dependency with the

viewing/lighting direction.

In rendering contamination effects, we must also consider the spatial distribution or tex-

ture of the contaminant. To this end, we developed methods for measuring contamination

patterns from real glass and plastic samples (Section 4.4). The measured data, together
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with some procedural textures, can be used to synthesize contamination patterns for ren-

dering various types of weathered appearance on transparent surfaces, as demonstrated in

Section 4.5.

4.2 Light Transport of Contaminated Transparent Surfaces

In this section, we construct the simplified analytic model for light transport on a contami-

nated transparent surface. Below, we first define some characteristics of this specific type of

material and explain our assumption of single scattering, and then show the derived models

for its reflectance and transmittance.

4.2.1 Definition and Assumption

Contaminated transparent surfaces are one specific type of layered material consisting of

two layers — the top layer is some type of contaminant (e.g., household dust, dry powder,

fingerprints) and the bottom layer is a transparent surface, as shown in Figure 4.2. All

the scattering events happen with the contaminant layer. Also, depending on the material

properties of the contaminant layer, the incident light might reflect and refract at the

interface between the air and the contaminant layer. In our study, the physical thickness

of the contaminant layers of interest ranges from a few micrometers (e.g., oil film) to a few

millimeters (e.g., powder).

For illustrative purposes, we loosely define three types of contaminants that are com-

monly seen on transparent surfaces — dust, dirt, and lipids (e.g., fingerprints), according

to their material properties and thicknesses, as summarized in Table 4.1. Dust consists of

smaller particles that are mostly forward scattering. Its density is usually very low and thus

we assume there is no refraction between the air and the dust layer. Examples in this cate-

gory include household dust, pollen, carbon blacks, and colloidal paints. Dirts are typically

tiny pieces of bulk materials, such as metal oxides, dry powder, clay, and silts, which are

often thicker and might have strong backward scattering. Since dirts have high densities,

light will refract and reflect on the surface. Lipids means thin layers of some oily substance,

such as fingerprints, lipstick, and oil mists. Lipids are usually very thin and mainly forward
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Table 4.1: Definition of the three types of surface contamination.

Interface with Air Optical Thickness Scattering

Dust No, n1 = n2 Small Mainly forward scattering

Dirt Yes, n1 6= n2 Medium Both forward and backward scattering

Lipids Yes, n1 6= n2 Small Mainly forward scattering

scattering, but they have high densities and therefore have an interface with the air. We

emphasize that the distinctions are not strict. More details about the characterization of

particles [Xu, 2002] and surface contamination [Kohli and Mittal, 2008] can be found in

material science literature.

In our work, for the contaminant layers of our interest, we assume that multiple scatter-

ing is negligible compared with single scattering. This assumption holds for an optically-thin

layer (defined in Section 2.1.2 on page 15). Fortunately, for many real-world transparent

surfaces, the contaminant layer can be approximated as optically-thin layers [Kohli and

Mittal, 2008], either because the layer is physically thin (e.g., fingerprints), or because the

contaminant has a very low density (e.g., dust). For some dirt patterns with large optical

thickness, the derived model can be regarded as a first-order approximation of the actual

scattering phenomena.

4.2.2 Construction of the BRDF and BTDF Models

Some researchers have proposed models for the light transport of layered materials. Blinn

[1982] derived a model for an opaque surface covered with a dust layer. Koenderink and Pont

[2003] derived a similar model and used it to explain the velvety appearance of materials

such as hairy skin and peaches. Both work assumed single scattering. Hanrahan and

Krueger [1993] first systematically introduced light transport theory from radiative transfer

literature [Chandrasekhar, 1960; Ishimaru, 1978] into computer graphics for modeling the

reflection of layer surfaces, in which they simulated both single scattering and multiple

scattering. Ershov et al. [2001] developed a recursive procedure to extend the analytic

models for one layer to multiple layers for interactive rendering of car paints. Stam [2001]
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Table 4.2: Notations of appearance models for weathered transparent surfaces.

Li, Lr, and Lt Radiance of the incident, reflected, and transmitted light

ωi, ωr, and ωt Direction of the incident, reflected, and transmitted light

N Surface normal

R12
p and T 12

p Reflectivity and transmissivity at the air-contaminant interface

R23
p and T 23

p Reflectivity and transmissivity at the contaminant-glass interface

n1, n2, and n3 Refractive index of air, the contaminant, and glass

g Henyey-Greenstein parameter (average cosine)

fr(·) and ft(·) BRDF and BTDF of the contaminated transparent surface

proposed a semi-analytic model for multiple anisotropic scattering in a layer bounded by

two rough surfaces.

In our study, we consider a specific type of layered material — a thin contaminant layer

on a transparent surface. In addition to the scattering events modeled in the previous work,

this specific material has its own set of scattering events. In particular, these events include

the reflection at the air-contaminant interface, the scattering of the light reflected from the

contaminated transparent surface, and the refraction through the contaminated surfaces.

Our model for contaminated transparent surfaces includes additional terms for handling

these light transport events. As shown later in Figure 4.6, theses events are important for

accurately simulating the light transport for this material.

As shown in Figure 4.2(a), for the light Li(ωi) incident from the air onto the transparent

medium, i.e., ωi · N > 0, there are four components for reflection and two components

for transmission. Since we only consider single scattering, analytic solutions of the light

transport equation (Equation (2.17)) exist for these components. The notations for some

standard quantities have been defined previously in Table 2.1 on page 19. Other notations

for the model derivation are summarized in Table 4.2.

Mirror Reflection from the Contaminant Surface L
(1)
r (ωr): If the contaminant layer

has an interface with the air (n1 6= n2), there is a mirror-reflection at the surface of the
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Figure 4.2: Light transport for a contaminated transparent surface: (a) Incident light from

air to transparent medium; (b) from transparent medium to air.

contaminant, and

dL
(1)
r (ωi, ωr)

Li(ωi) · cos θi · dωi
= R12

p (θi) · δ(ωi, ωr), (4.1)

where R12
p (θi) is the reflectivity (in terms of power) determined by Fresnel equations (see

Table A.2 on page 153) , and δ(ωi, ωr) is the delta function defined as δ(ωi, ωr) = δ(sin2 θi−

sin2 θr)δ(φi − φr ± π).

Mirror Reflection from the Transparent Surface L
(2)
r (ωr): This component mod-

els the light that passes through the contamination layer to the transparent surface and

then is mirror reflected back toward the contaminant layer. As the light travels inside the

contaminant layer it is attenuated exponentially with the optical path depth, leaving the

reduced intensity [Ishimaru, 1978]. Note that the light will be attenuated twice — when it

is transmitted into the contaminant and when it is reflected back. This gives

dL
(2)
r (ωi, ωr)

Li(ωi) · cos θi · dωi
= e

−τ( 1
cos θit

+ 1
cos θrt

)
· T 12

p (θi) · T
12
p (θr) · R

23
p (θit) · δ(ωi, ωr), (4.2)

where τ is the optical thickness of the contaminant layer, ωit and ωrt are the directions

of the refracted rays in the contaminant layer computed by Snell’s law. Since we consider

mirror reflection, we have ωit = ωrt. T 12
p (θi) and T 12

p (θr) are the transmissivity (in terms

of power) determined by Fresnel equations (see Table A.2 on page 153).
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Scattering of the Incident Light L
(3)
r (ωr): This component is due to scattering and is

called the diffuse intensity [Ishimaru, 1978]. For optically thin layers, we consider only single

scattering, and thus have analytic solutions to the light transport equation (Equation (2.17))

dL
(3)
r (ωi, ωr)

Li(ωi) · cos θi · dωi
=

n2
1

n2
2

·T 12
p (θi) ·T

12
p (θr) ·

1 − e
−τ( 1

cos θit
+ 1

cos θrt
)

cos θit + cos θrt
·W0 ·p(π−θit−θrt), (4.3)

where p(θ) is the phase function, W0 is the albedo of scattering of the contaminant.

Scattering of the Mirror-reflected Light L
(4)
r (ωr): Similarly, this term involves single

scattering of the light reflected from the transparent surface (bottom lit):

dL
(4)
r (ωi, ωr)

Li(ωi) · cos θi · dωi
=

n2
1

n2
2

· T 12
p (θi) · T

12
p (θr) ·

e
− τ

cos θit − e
− τ

cos θrt

cos θit − cos θrt

·
(

R23
p (θit) · e

− τ
cos θit + R23

p (θrt) · e
− τ

cos θrt

)

· W0 · p(θit − θrt).

(4.4)

Transmission of the Incident Light L
(1)
t (ωt): This component models the light that

passes through the contaminant layer and is transmitted into the transparent surface:

dL
(1)
t (ωi, ωt)

Li(ωi) · cos θi · dωi
=

n2
3

n2
1

·T 12
p (θi)·T

23
p (θit)·e

− τ
cos θit ·δ(sin2 θi−

n2
3

n2
1

sin2 θt)δ(φi−φt±π). (4.5)

Scattering of the Incident Light L
(2)
t (ωt): This component models the light scattered

into the transparent surface:

dL
(2)
t (ωi, ωt)

Li(ωi) · cos θi · dωi
=

n2
3

n2
2

· T 12
p (θi) · T

23
p (θt) ·

e
− τ

cos θit − e
− τ

cos θtt

cos θit − cos θtt
· W0 · p(θit − θtt). (4.6)

Summary: The resulting BRDF model has both a specular term fr,s (from L
(1)
r and L

(2)
r )

and a diffuse term fr,d (from L
(3)
r and L

(4)
r ). The BTDF has both the attenuated term ft,a

(from L
(1)
t ) and the diffuse term ft,d (from L

(2)
t ):

fr(ωi, ωr) = fr,s(ωi, ωr) + fr,d(ωi, ωr),

ft(ωi, ωt) = ft,s(ωi, ωt) + ft,d(ωi, ωt), (4.7)

where the four components are given by

fr,s(ωi, ωr) =
dL

(1)
r (ωi, ωr) + dL

(2)
r (ωi, ωr)

Li(ωi) · cos θi · dωi
, fr,d(ωi, ωr) =

dL
(3)
r (ωi, ωr) + dL

(4)
r (ωi, ωr)

Li(ωi) · cos θi · dωi
,

ft,s(ωi, ωt) =
dL

(1)
t (ωi, ωt)

Li(ωi) · cos θi · dωi
, ft,d(ωi, ωt) =

dL
(2)
t (ωi, ωt)

Li(ωi) · cos θi · dωi
.
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Proposed Model
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Figure 4.3: Relationship of the scattering components for the reflection and transmission

of contaminated transparent surfaces.

These relationships are summarized in Figure 4.3. In Appendix B.2 on page 160, we

have proved that the derived BRDF fr and BTDF ft models satisfy both the generalized

Helmholtz reciprocity and the energy conservation constraints.

The Henyey-Greenstein function [Henyey and Greenstein, 1940] is used as the phase

function. Therefore, there are four parameters in the model for characterizing the material

properties for contaminated transparent surfaces (we assume the refractive index of the air

n1 and the refractive index of the glass n3 are known) — τ , the optical thickness of the

layer, usually is a texture of the contaminant pattern; g, the Henyey-Greenstein parameter

of the phase function; W0, the albedo of the contaminant; and n2, the refractive index of

the contaminant. Different kinds of contaminants can have parameters in different ranges,

while their effects are captured with the same model.

Figure 4.4 plots the diffuse components, fr,d(·) and ft,d(·), with respect to the optical

thickness τ and the Henyey-Greenstein parameter g of the phase function. It shows that as

τ increases, the diffuse reflection fr,d(·) steadily increases to a maximum value and keeps

unchanged; in contrast, the diffuse transmission ft,d(·) increases to a point, and then begins

to decrease because of absorption and multiple scattering — this is consistent with our

experience.

Figure 4.5 plots the diffuse components fr,d(·) and ft,d(·) with respect to the incident
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g = -0.3 g = 0 g = 0.5

fr,d

ft,d

Figure 4.4: Plots of the diffuse components fr,d(ωi, ωr) (red) and ft,d(ωi, ωt) (blue) with

respect to the optical thickness τ and the Henyey-Greenstein parameter g.

fr,d

ft,d

θ i =10 θ i =45 θ i =60

Figure 4.5: Plots of the diffuse components fr,d(ωi, ωr) (red) and ft,d(ωi, ωt) (blue), with

respect to the incident angle θi: from left to right, θi increases from 10 to 40 to 65 degrees.
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angle θi, which show the Fresnel effect — at more grazing angles, the diffuse reflection fr,d(·)

increases, while the transmission due to scattering ft,d(·) decreases. This is also consistent

with our experience, i.e., the bright contour effect [Koenderink and Pont, 2003].

4.2.3 Model Validation and Comparison

Some components in the derived models above overlap with the models in previous work [Han-

rahan and Krueger, 1993; Blinn, 1982]. 1 When τ = ∞, the contaminant layer is semi-

infinite. The BTDF is zero since there will be no light transmitted. For the BRDF, both

L
(2)
r and L

(4)
r are zero since no light will be reflected on transparent surfaces, and thus the

specular term fr,s only comes from L
(1)
r and the diffuse term fr,d only comes from L

(3)
r

(Equation (4.3)) which reduces to

fr,d(ωi, ωr) =
n2

1

n2
2

· T 12
p (θi) · T

12
p (θr) · W0 · p(π − θit − θrt) ·

1

cos θit + cos θrt
. (4.8)

This is consistent with the Lommel-Seeliger reflectance law and previous results in [Han-

rahan and Krueger, 1993; Koenderink and Pont, 2003], with the assumption of isotropic

scattering for semi-infinite scattering medium.

Nevertheless, there are some components that are in our model while not in [Blinn,

1982] (i.e., L
(1)
r , L

(2)
r , L

(4)
r ) and [Hanrahan and Krueger, 1993] (i.e., L

(2)
r and L

(4)
r ). These

additional components are used to model certain light transport events important for con-

taminated transparent surfaces, such as rendering certain kinds of contamination (e.g.,

lipids and dirt) or rendering under certain lighting or view conditions (e.g., stray light or

viewing at grazing angles).

Figure 4.6 shows the simulation setup and results for a validation experiment. A colli-

mated beam Li is assumed to be normally incident on a transparent surface (refractive index

n3 = 1.33) covered with a uniform layer of dust, with the optical thickness τ = 0.2, the

albedo of scattering W0 = 0.5, the Henyey-Greenstein parameter g = 0.9 and the refractive

1We also corrected some terms in [Hanrahan and Krueger, 1993; Blinn, 1982]. In [Blinn, 1982], L
(4)
r is

modeled as ω · φ(π), namely “a term for the forward scattering of the background through the cloud”. This

omits the angular dependency of the scattering. We correct it in Equation (4.4). L
(1)
t in [Hanrahan and

Krueger, 1993] (namely L
(0)
t,v in Section 5.1) should be corrected by replacing τ with τ/ cos θ as shown in

Equation (4.5).
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Figure 4.6: Model validation and comparison. (a) A Monte Carlo simulation is performed

to calculate reflection from a contaminated transparent surface. (b) The curves show the

amount of reflected light Lr(θr) for each outgoing direction θr. Compared with the models

in [Blinn, 1982; Hanrahan and Krueger, 1993], our derived model is seen to be more accurate

and closer to the Monte Carlo simulation.

index n2 = 1. We use the software package in [Wang et al., 1995] to perform the Monte

Carlo simulation. The curves shown in Figure 4.6(b) represent the amount of reflected light

Lr(θr) at each outgoing direction θr from 0 to π/2 for different evaluation methods. As

shown, compared with the models in previous work [Blinn, 1982; Hanrahan and Krueger,

1993], the result of our model is more accurate and closer to the simulation.

4.2.4 Thin Transparent Slab with Contamination

The BRDF and BTDF model can be plugged directly into any raytracer to render contam-

inated transparent surfaces. However, since many transparent objects in the real world are

thin slabs with two parallel interfaces with air, such as windows and eyeglasses, to make the

rendering more efficient, we can further simplify the above BRDF/BTDF model since both

the direction and the position of the incoming ray and the outgoing ray will not change.

This is essentially a combination of the above model and the model for a clean transparent

surface. If both sides of the slab have contaminants, we can also combine the above model

twice to get a simplified model, each of which is for one side of the slab.

Specifically, as shown in Figure 4.7, for the case ωi · N > 0 (i.e., the incident light first
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Figure 4.7: Light transport for a thin transparent slab with contamination, where the

incident light goes from air into the slab and again into air.

strikes the contaminant layer and then transmits into the transparent slab and finally goes

out to the air), for the BRDF, L
(1)
r and L

(3)
r are unchanged. For L

(2)
r and L

(4)
r , we need

to replace R23
p by R23

p + T 23
p T 32

p R31
p in Equations (4.2) and (4.4), since we need to take

into account that a part of the transmitted light in the slab will be reflected back into the

contaminant layer (the ray marked with ⋆ in Figure 4.7). For the BTDF, both L
(1)
t and

L
(2)
t in Equations (4.5) and (4.6) need to be multiplied by an additional term T 31

p when the

refracted rays come out from the slab to the air. The directions of the refracted rays, ωtt,

also need to be changed accordingly.

In Figure 4.8, we verify the accuracy of our BRDF/BTDF model by rendering (with a

global illumination renderer) a simple scene of a dusty glass slab. Figure 4.8(a) is rendered

using Monte Carlo simulation with 2048 samples per pixel needed to reduce noise, and it

takes about 1 hour. Figure 4.8(b) is rendered with 4 samples per pixel using the derived

BRDF/BTDF model, which takes about 10 seconds (this is essentially the same time as

using any other analytic BRDF models ). The RMS relative difference between these two

images is 2.2%, which shows the accuracy of our model.
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(a) Monte Carlo (b) Proposed Model

Figure 4.8: A uniform layer of dust rendered with (a) brute force Monte Carlo volumetric

scattering and (b) our proposed BRDF/BTDF model. The RMS error between the two

images is 2.2%, while the proposed analytic model is about 300 times more efficient for

rendering.

4.3 Visual Effects Predicted by the Model

In Figure 4.9, we present a set of canonical examples corresponding closely to common real-

world situations; in each a contaminant layer is placed on the surface of a thin transparent

slab. The two leftmost columns describe the various viewing and illumination conditions

considered here, as well as the placement of the contaminant layer. On the transparent

slab, there are 2 × 3 patches of contaminants, as seen in the renderings in the rightmost

column. From left to right, the contaminants are dust, dirt, and lipids (e.g., fingerprints).

These three kinds of contaminants cover a large range of the parameters and are selected

to demonstrate the typical effects. The two patches in each column are identical. For

dust and dirt, the optical thickness of the patches are uniform; for fingerprint, we crop

a fingerprint texture and use it as the optical thickness. Finally, the middle column of

Figure 4.9 shows scattering diagrams for the three types of contaminants, with the red

components being reflection and the blue components being transmission. The parameters

are chosen to demonstrate representative visual effects for each type of the contaminants.
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Figure 4.9: Visual effects predicted by our model, illustrated for a set of canonical scenarios

common in the real world.
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View of Window in Daytime: In the first row of Figure 4.9, we simulate the case when

we are in a dark room and look through the window outward in daytime. Only the top

region (or “sky”) of the environment is (uniformly) bright. In the renderings, the upper

half is bright and the bottom half is dark since only the upper half has environment light.

However, the contaminated patches in the upper half look darker because of attenuation. By

contrast, the contaminated patches (dust and fingerprint) in the bottom half look brighter

because of scattering of the environment light. The dirt patches behave almost completely

like an attenuator, with minimal scattering (consider the blue lobe in the middle scattering

diagram). Therefore, that patch is black in both upper and lower regions.

Similar effects can be seen in real photographs (Figure 4.1(e)) and in rendering results

(Figure 4.16 and Figure 4.21), where the contaminant looks darker against the sky, and

brighter against the ground.

View of Window in Nighttime: The second row of Figure 4.9 corresponds to the

situation when we are in a bright room (upper half is lighted) and look through the window

in nighttime. Unlike the previous case, the contaminants in the upper half look brighter

than the clean regions, because there is not only reflection from the slab but also scattering

from the contaminant. The contaminants in the bottom half also look brighter because of

scattering. This is true even for dirt–while the light transmitted through the window is

attenuated as before, in this case we see primarily the light reflected from the dirt layer.

Figure 4.16(c) shows this effect in rendering.

Monitor Turned Off: The third row in Figure 4.9 mimics the situation in which a

computer monitor is turned off. Note that the contaminant is on the other side, the side

closer to the camera. In this case, the contaminated regions in the bottom half still look

brighter than the background due to scattering. The contaminants in the upper half look

slightly darker than before because the reflected light from the monitor screen is attenuated

by the contaminant before it comes to the camera. As the rendering results in Figure 4.17

(and the photograph in Figure 4.1(h)) show, the contaminant patterns are visible on the

monitor when it is turned off.
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Monitor Turned On: When the monitor is turned on, as shown in the fourth row in

Figure 4.9, there is another textured area light source behind the screen (i.e., the light from

the monitor itself) in addition to the environment light. The area light is so close to the

slab that the attenuated flux from the area light is much stronger than the flux scattered

from the environment. Therefore, the difference between the clean regions and the regions

with dust and fingerprint is not obvious, i.e., the contaminants are almost invisible. For

dirt, since its optical thickness is larger, its brightness will be attenuated more and thus it

appears dark like an occluder.

With the previous example, this explains why we can see the dirts on the screen when

the monitor is turned off while we usually cannot see them when the monitor is on, as shown

in Figure 4.1(h) and Figure 4.17.

Collimated Beam from the Side: The fifth row in Figure 4.9 mimics the scenario

of sunlight striking a window or lens. In this case, a collimated beam is incident on the

transparent slab from the side. The camera sees no light from the collimated beam (e.g.,

sunlight) in the clean regions because the transmission does not change the incident direc-

tion. In contrast, in the contaminated regions, the scattering due to the contaminants will

redirect some of the light toward the camera. This is one of the reasons why a camera with

a dusty lens or filter usually generates lens flare or a washed-out effect when there is strong

stray light. Figure 4.1(g) and Figure 4.20 show photographs taken with a dusty lens and

the corresponding rendering result.

4.4 Acquisition and Synthesis of Contamination Patterns

There exist a large variety of interesting contaminants on transparent surfaces in nature. For

rendering photo-realistic images, we need to measure the weather appearance of these real

samples. Among the four parameters in our derived BRDF and BTDF model, we developed

methods to measure the optical thickness pattern τ(x, y) and the Henyey-Greenstein param-

eter g. For the other two parameters, the refractive index n2 and the albedo of scattering W0,

their values are specified by users or from certain manuals [Stover, 1990]. To date, we have

gathered 30 examples of representative materials, including many examples of dust, dirt, and
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Figure 4.10: Setups used to measure (a) the optical thickness pattern τ(x, y) and (b) the

Henyey-Greenstein parameter g from real contaminated glass samples.
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Household Dust (Dust)

Smudges (Lipids)
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Salt Deposit (Dirt)

Oil Stain (Lipids)

Figure 4.11: Examples of the acquired optical thickness patterns, measured with the setup

in Figure 4.10(a). Intensity is proportional to τ(x, y).

lipids. The measured data has been released online at http://www.cs.columbia.edu/CAVE.

4.4.1 Measurement of Optical Thickness Pattern

To measure the optical thickness texture τ(x, y), we used the shadow map generated by

attenuation from the contaminant layer. Figure 4.10(a) shows our setup. The projector

illuminates a thin glass slab with contaminants on the far side. Behind it is a Lambertian

board, and the camera is on the side. The camera is radiometrically calibrated beforehand.

The intensity of each point in the shadow map comes from two parts: the attenuated

transmitted light L
(1)
t (Equation (4.5)) from this point, and the scattering component L

(2)
t
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Figure 4.12: Examples of the measurements for estimating the Henyey-Greenstein param-

eter g. Top: acquired images. Bottom: the fitted phase functions.

(Equation (4.6)) from neighboring points. Since the albedo of the contaminant layer is

assumed to be small (otherwise it would generate multiple scattering) and it is mostly

forward scattering, there will be much less contribution from neighboring points due to

scattering. Therefore, we have L
(1)
t ≫ L

(2)
t and thus the measured intensity of the shadow

map, I(x, y) ≈ L
(1)
t . Based on Equation (4.5), we now have I(x, y) ∝ e−τ(x,y) (cos θit = 1

since illumination is head on). Note that the attenuation is only related to τ(x, y) and is

independent of g. The formula used to compute τ(x, y) is as follows:

τ(x, y) = −ln
I(x, y)

Iclean
, (4.9)

where Iclean is the image intensity in the clean regions of the glass. Figure 4.11 shows some

acquired textures with different kinds of contaminants. Image intensity is proportional to

the optical thickness.

4.4.2 Measurement of Henyey-Greenstein Parameter

We developed a rather simple image-based method to measure the Henyey-Greenstein pa-

rameter g for various kinds of contaminants based on the derived BRDF/BTDF model,

which requires only a single image and can be easily implemented. We aim to obtain

qualitatively correct estimates of g for different materials.

The setup, shown in Figure 4.10(b), is similar to the one for measuring τ(x, y), except
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in two places. First, we use a laser instead of a projector. Second, we focus on the light

scattered from a small, uniform patch. Using the above method, we first measure the optical

thickness τ of this patch. When the laser beam strikes the contaminants, part of it will

scatter toward the Lambertian board and generate a falloff pattern on the board. The center

region will have a very strong spike due to the attenuated laser, while the brightness of other

regions is due to the scattering L
(2)
t . Based on Equation (4.6), the measured intensity for a

point (x, y) is

I(x, y) = β · p(θ; g) ·
e−τ − e−τ/ cos θ

1 − cos θ
· cos4 θ, (4.10)

where β is a scale factor, p(θ; g) is the phase function, and θ is the angle of the scattered

ray from the normal. The derivation of this formula can be found in Appendix B.2.

We measured 10 samples in total which contain representative contaminants. For other

samples, we used the g values from the corresponding category for rendering. Figure 4.12

shows some images for different kinds of contaminants. We also show the acquired image for

clean glass where as expected the scattering is minimal. With the assumption of isotropic

scattering, each circle around the center of the image corresponds to a single angle θ. We

then compute the average I(x, y) along the circle, and use it to fit the phase function. The

second row in Figure 4.12 shows the fitting results. The third row shows the estimated g

values.

4.4.3 Synthesis of Contamination Patterns from Captured Data

A simple tool was developed to synthesize novel contamination patterns from the captured

data according to users’ input. The synthesized texture, in which each channel corresponds

to one kind of parameter of the contaminant, can be mapped on arbitrary transparent

objects for rendering the weathered appearance.

We first extracted a collection of prototypes for each of the three types of contaminants

from the measured raw data. In addition, to increase the variation of the atomic patterns,

we also synthesized stain and dirt patterns using fractal Brownian motion [Barnsley et al.,

1988], similarly as the synthesis of coffee stain in [Becket and Badler, 1990].

For synthesis, as shown in Figure 4.13, a user selects prototypes from each category for

the desired contamination pattern and specifies the size of the output texture. The tool
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Figure 4.13: A synthesis tool to create contamination patterns from captured data.

then synthesizes a contamination layer for each prototype individually. For dust, we use

image quilting [Efros and Freeman, 2001] for synthesis. For lipids, we randomly transform

(scale and rotate) the prototype and randomly tile several copies on the canvas. For dirt,

we use a similar random placement but we limit the range of rotation and translation since

the water stripes usually are on the top of an image. The three synthesized layers are

then alpha-blended together to generate the final texture. A user can control the amount

and the range of transformation for each prototype and also add/remove more prototypes

interactively.

We can also create time-varying contamination patterns to simulate a weathering pro-

cess. Figure 4.15 shows an example. For rendering a window getting dirty over time, the

time-varying contamination patterns are synthesized as a stochastic process. The accu-

mulation of contaminants is assumed to be a Poisson process, i.e., the number of atomic

contaminant patterns appeared on the window during a time interval follows the Poisson

distribution. For dust, the atomic patterns are randomly selected points on the window.

For dirt and lipids, the atomic patterns are randomly selected from the above collection.
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τ=0.25 τ=0.5 τ=0.75 τ=1τ=0

Figure 4.14: A glass sphere rendered with different thicknesses of a uniform layer of dust.

As the optical thickness increases (from left to right), both the transmission and the reflec-

tion become smoother and give the sphere a more velvety appearance, especially near the

boundary.

4.5 Rendering

We now show some rendering results of transparent objects with various kinds of contam-

ination both in 3D scenes and on 2D photographs. In all the examples, sampling of the

BRDF/BTDF models is done by sampling the Henyey-Greenstein phase function. The

parameters of the contaminant layer are generated with the synthesis tool.

4.5.1 Rendering of 3D Scenes

Dusty Glass Sphere: Figure 4.14 shows a glass sphere covered with a uniform dust layer

in a complex lighting environment while the optical thickness of the dust, τ , increases. As

shown, the appearance of the glass sphere changes from completely transparent to semi-

transparent and finally will become an opaque dusty surface. As τ increases, the sphere

becomes smoother and softer, especially near the contour. This is consistent with the effects

of dusty opaque surfaces since our model subsumes Blinn’s dust model. However, we also

capture the transmission effects of the dust layer on the glass sphere.

Dirt on a Glass Window: Figure 4.15 shows the time-varying weathered appearance

of a window of a room. The accumulation of contaminants on the window are simulated as

Poisson processes. The top row in Figure 4.15 shows the synthesized patterns at different

times, and the middle row and the bottom row show the corresponding rendered images
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Figure 4.15: A contaminated window rendered with a background that changes with time

of day. Top: the dirt pattern over time. Middle: the rendered scene viewed from indoors.

Bottom: the rendered scene viewed from outdoors.

(a) Morning (6:00 AM) (b) Afternoon (2:00 PM) (c) Night(1:00 AM)

Figure 4.16: A contaminated window rendered with a background that changes with time

of day. Note how the contaminants appear very differently for the different illuminations of

the background.



CHAPTER 4. WEATHERED APPEARANCE FOR TRANSPARENT SURFACES 76

Figure 4.17: A monitor screen rendered with dust and fingerprints. The contaminants

become more clearly visible when the monitor is off. Their brightness increases as the

viewing angle approaches the grazing angle.

viewed from inside and outside of the room.

Figure 4.16 shows a view through the window while the outside scene (illumination)

is changing over time. The outside scene is from the Weather and Illumination Database

[Narasimhan et al., 2002] which records time-lapse images for natural scenes. Inside the

room, we have a fixed environment light. The contamination pattern is composed of dried

water streaks (dirt) in the left of the window, smudges and fingerprints (lipids) in the right,

and a very thin layer of dust. As shown, against the sky the contaminant pattern looks

darker because of attenuation; while against the building (or in the shadow of the building),

the contamination pattern looks brighter because of scattering. Moreover, when viewing

the window at different times of day, with different types of illumination, the contaminant

pattern generates various effects, as predicted by our model in Figure 4.9.

Monitor On/Off: Figure 4.17 shows a monitor screen with contaminant. As predicted

in Section 4.3, the contaminant pattern is much less visible when the monitor is turned

on. Moreover, if the view or the illumination moves closer to the grazing angle, owing

to the Fresnel effect and also the resulting longer path for photons to travel through the



CHAPTER 4. WEATHERED APPEARANCE FOR TRANSPARENT SURFACES 77

0τ = 0.05τ = 0.10τ =

Figure 4.18: A cognac glass rendered with different thicknesses of a uniform dust layer

(increasing from left to right). The caustics and the base of the glass become dimmer and

smoother as the dust thickness increases.

contaminant layer, the amount of reflected light will increase and and thus the contaminant

pattern becomes more prominent, which is consistent with our experience.

Dirts on a Cognac Glass: Figure 4.18 shows dust accumulating on a cognac glass.

We render the results with photon mapping [Jensen, 2001]. The body of the cognac glass

has a similar appearance as the glass sphere example, while the base of the cognac glass

and the caustics show interesting changes due to the scattering and the attenuation of the

contaminant.

Figure 4.19 show the rendering of the cognac glass covered with a stain pattern (syn-

thesized using the method in Section 4.4.3) with and without scattering. Notice the effects

produced by the scattering of the contaminant, including the vertical “shadows” on the

glass, the contrast reversal of the stain against the background, and the increased scatter-

ing at grazing angles, which are important for the realism of the rendering.

4.5.2 Composition of 2D Photographs

In addition to rendering 3D scenes, the derived models can be used as an effects filter to

add the weathered appearance of transparent surfaces to 2D photographs.

Dust Scattering on a Camera Lens: Contaminants on camera lenses will scatter

lights and generate effects such as lens flare from stray lights and blurring, as seen in
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(a) With scattering (b) Without scattering

Figure 4.19: A cognac glass rendered with stains. The glass is rendered (a) with and

(b) without scattering from the stains. As shown, the scattering effects, embedded in the

derived BRDF and BTDF models, are essential for the realism of the rendering.

(a) (b)

Figure 4.20: Compared with the photograph taken with a dirty lens (Figure 4.1(g)), our

model can be used to modify (a) a photograph of the scene taken with a clean camera lens

to create the effects of (b) an image as if it were taken with a dirty camera lens.
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(c)
(a)
 (b)


Figure 4.21: Adding weathered appearance to the clean windows in real photographs: (a)

Original photographs. (b) Synthesized contamination patterns. (c) Composed images.

Figure 4.1(g). Based on the derived model, we can use an image taken with a clean lens,

such as Figure 4.20(a), and composite it as if it were taken with a dirty lens, as shown in

Figure 4.20(b). The texture of the contamination pattern is created to be similar to that

in Figure 4.1(g). While there is probably little chance that such composition is desirable

in practice, this example is mainly to demonstrate that the derived BRDF/BTDF model is

capable of accurately reproducing one type of appearance phenomena. A more interesting

and meaningful problem is how to remove these dirty-lens image artifacts from captured

photographs, which will be the topic of the next chapter.

Contaminating Clean Transparent Surfaces: Figure 4.21 show two examples where

our goal is to make the window regions in the input photographs dirty. We first estimate the

3D positions of the window plane and camera from the four corner points of the window.
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The outside illumination is assumed to be the image intensity in the window region which is

synthesized and mapped onto a hemisphere. Using the derived BRDF and BTDF, we com-

pute the image intensity in the regions of the window with contamination. In Figure 4.21,

(a) are the photographs through clean windows, (b) are the synthesized contamination pat-

terns, and (c) are the final composed images where the top image shows the composition

as if the image were taken through a glass that had been sprayed by sea water and the

bottom image shows the contrast reversal effects for dirty windows in real world, such as

the brighter appearance on the bottom right and the darker appearance in the top regions.

4.6 Summary and Discussion

Contamination (such as dust, dirt, and lipids) often accumulates on transparent surfaces

over time, thereby scattering light and creating the weathered appearance that is important

for the rendering of transparent objects. In this chapter, we presented an efficient way to

synthesize this weathered appearance. By modeling the contaminant as an optically-thin

layer, we constructed an analytic BRDF/BTDF model that accurately captures most of

the canonical visual effects and allows efficient rendering. We also developed single-image

based methods to measure contamination patterns from real samples. We show that our

model and the measurements can be used to synthesize realistic weathered appearance on

3D scenes and 2D photographs.

One future work is to extend our model to the rendering of contaminated translucent

materials, such as lipids on skin, dust on marble, and dirt on transparent vessels holding

participating media (e.g., wine and various other liquids) where subsurface scattering needs

to be considered.
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Chapter 5

Removing Image Artifacts Due to

Dirty Camera Lenses

In Chapter 4, we derived an analytic BRDF/BTDF model for reproducing weathered ap-

pearance for transparent surfaces. While imperfection is desirable in computer graphics,

for many computer vision and imaging tasks, we often want to remove these artifacts from

photographs. In this chapter, we studied one type of images artifacts that are commonly

seen in digital photography — the artifacts caused by dirt or dust on camera lenses, and

proposed two automatic methods to remove the image artifacts.

5.1 Introduction

The lenses of consumer digital cameras or telescopes, or the front windows of security

cameras, often accumulate various types of contaminants over time (e.g., fingerprints, dust,

dirt). These contaminants attenuate incoming light and scatter light from other directions,

which often results in artifacts in the captured image, as shown in Figure 4.1(g). The

artifacts are an annoyance for photographers, and also damage important scene information

for applications in computer vision or digital forensics.

Certainly, a simple solution is to clean the camera lens. However, this is impossible

for existing images and videos, and impractical for some automated imaging systems, such

as outdoor security cameras, remote sensing (e.g., Mars Exploration Rover [Willson et al.,
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2005]), astrophotography [Romanishin, 2006], or covert surveillance behind a fence. There-

fore, it is necessary to develop computational algorithms to remove the dirty-lens artifacts

from captured images.

Previous work on the removal of imperfections from images can roughly be grouped into

two categories. The first category is image in-painting, where texture synthesis techniques

are used to fill holes from neighboring regions [Bertalmio et al., 2000; Efros and Freeman,

2001; Sun et al., 2005; Liu et al., 2008]. These methods often require some user interaction

to label the affected regions and synthesize the affected regions from their neighborhood,

but they do not need know the image formation of the artifacts.

The second category is the so-called physically-based methods, which first understands

and models the image formation of the artifacts and then solves for the original scene.

Physically-based methods are generally expected to recover more faithful scene details,

given that the image formation models are sufficiently accurate. Extensive work has been

performed in this area, such as recovering images taken in bad weather [Narasimhan and

Nayar, 2003b], dehazing [Schechner et al., 2001; Fattal, 2008; He et al., 2009], removing

rain [Garg and Nayar, 2004], and underwater imaging [Schechner and Karpel, 2005].

For removing the artifacts caused by defective optic systems (e.g., a camera), Talvala

et al. [2007] studied camera-veiling glare which is a mostly uniform loss-of-contrast in the

image and is caused by the inter-reflection among lenses. Raskar et al. [2008] proposed to

use a light field camera for removing lens glare. Willson et al. [2005] studied lens dirt for

simulating the artifacts. In astrophotography, for removing the artifacts caused by lens dirt,

a standard procedure is to take flat field frames [Romanishin, 2006] and divide captured

images with the flat field frames. Zhou and Lin [2007] proposed interactive methods to

remove artifacts caused by the attenuation of sensor dust. Both methods considered only

the attenuation of light caused by lens dust but not the scattering.

Our work follows the physically-based approach and seeks to recover the original scene

on a point-wise basis without user interaction. This is possible because for lens dirt the

artifacts are seriously defocused, and thus the original scene is (partially) visible in the

captured image (except where very thick lens dirt completely blocks the light). While we

draw inspiration from the related work listed above, we focus on different visual effects
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Scene Dirt Lens Sensor

Figure 5.1: Image formation model for a dirty-lens camera: α ∈ [0, 1] is the attenuation

pattern (0 = completely blocked). The captured image I(x) includes the attenuated I0 · α

and the scattered light Iα.

and consider both the attenuation and scattering effects caused by lens dirt. Moreover,

physically-based methods and image in-painting methods are not mutually exclusive — the

former can be used where the scene is partially visible, after which the latter can be used

on the remaining completely-blocked regions.

5.2 Image Formation Model

Lens dirt can be modeled as an intermediate layer between the target scene and the camera.

The captured image I(x) consists of two components — (1) attenuation where scene

radiance I0(x) is attenuated by the dirt; (2) intensification where the dirt scatters stray

lights from the environment (e.g., the sun) into the camera. Intuitively, the attenuation

darkens the captured image while the intensification brightens it1.

As shown in Figure 5.1, suppose α(x) ∈ [0, 1] is the attenuation pattern of the lens dirt,

which describes how much light remains after traveling through the dirt layer (α(x) = 0

means completely blocked), and Iα(x) is the intensification pattern (i.e., the scattered

radiance from the dirt). Assuming the camera is focused on the target scene, we have the

following image formation model:

I(x) = I0(x) · (α(x) ∗ k(x)) + Iα(x) ∗ k(x), (5.1)

1The darkening and brightening effects have been discussed in [Willson et al., 2005; Gu et al., 2007].
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0 1
0

Figure 5.2: A schematic diagram showing the relationship between the attenuation pattern

α(x) and the intensification pattern Iα(x).

where k(x) is the defocus blur kernel for the dirt layer, and ∗ denotes convolution. There

are several important features of Equation (5.1):

Point-wise multiplication preserves high frequencies: The term I0(x)·(α(x) ∗ k(x))

involves a point-wise multiplication of the original image I0(x) and the attenuation α(x) ∗

k(x). This means that as long as α(x) ∗ k(x) > 0, all the high-frequency components in

I0(x) will still be (partially) preserved in the captured image I(x). It is this property that

allows us to recover the original scene in a point-wise manner.

On the other hand, this property also shows a major limitation of our methods: in

regions where α(x) ∗k(x) = 0, no information on the original scene is captured in I(x), and

we have to revert to neighboring pixels for synthesizing I0(x). Fortunately, this is usually

not a problem for dirty-lens artifacts — the defocus blur for lens dirt is so large that the

artifacts are always highly blurred in captured images.

Relationship between α(x) and Iα(x): Both the attenuation pattern α(x) and the

intensification pattern Iα(x) are caused by the same medium — the lens dirt. Therefore,

they are not independent variables. Their relationship is governed by the radiative transfer

equation (Equation (2.17) on page 17). Qualitatively, their relationship can be shown as

the schematic diagram in Figure 5.2 — wherever the lens is clean, no light is blocked (i.e.,

α = 1), nor is there any intensification (i.e., Iα = 0); as the dirt increases, it begins to

attenuate more light (i.e., α decreases) but it will also scatter more stray light (i.e., Iα

increases); when the dirt layer is thick enough (i.e., α < α0), the amount of the scattered

light reaches its peak value and starts to decrease because of absorption; when the dirt
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becomes too thick and completely blocks the light (i.e., α = 0), the scattered light will also

diminish (i.e., Iα = 0).

Although it is intuitive, this nonlinear relationship between α(x) and Iα(x) is often

difficult to obtain for image enhancement, since it requires knowing the material properties

of the lens dirt and camera settings. In Section 5.3, we show that under certain assumptions

this relationship can be simplified, which can give us a simpler image formation model for

image enhancement.

Solving for I0(x) with Multiple Images: Equation (5.1) shows that recovering the

artifact-free image I0(x) from a single input image is ill-posed, because both α(x) and Iα(x)

are unknown in general.

We demonstrate two methods to estimate α(x) and Iα(x) — (1) If we have access to

the camera, the attenuation pattern and the intensification pattern of the lens dirt can

be directly measured from multiple pictures (≥ 2) of a stripe pattern (Section 5.4); (2)

For situations where we do not have access to the camera, we show that α(x) and Iα(x)

can be estimated from multiple images taken with the same dirty lens camera, such as a

video (Section 5.5). Once α(x) and Iα(x) of the lens dirt are known, we show that dirty-

lens artifacts can be removed from individual photographs by enforcing the sparsity on the

recovered images’ gradients — one well known prior on natural images.

5.3 Model Simplification and Validation

In this section, we make a few assumptions about lens dirt and camera settings in order to

simplify the image formation shown in Equation (5.1). The simplification is then validated

with experimental results.

Model Simplification: Our first assumption is that lens dirt usually is an optically thin

layer of participating media (see Section 2.1.2 on page 15). Therefore, the BRDF/BTDF

model derived in Chapter 4 for single scattering can be used. For the attenuation pattern

α(x), it is caused by the absorption of lens dirt and it corresponds to L
(1)
t derived in
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Section 4.2.2 (Equation (4.5) on page 60), based on which we have

α(x) = k1 · exp (−τ(x)/ cos θ(x)), (5.2)

where τ(x) is the optical thickness of the lens dirt at pixel x, θ(x) is the angle between the

camera optical axis and the ray from the optical center to pixel x, and k1 is some constant.

The intensification Iα(x) is caused by the scattering of lens dirt, i.e., the dirt will

“gather” light from the environment. Therefore, Iα(x) is an integral of scattered light over

the entire outside illumination:

Iα(ωo) =

∫

ωi

ft (ωi, ωo; τ,W0, g, n) · Li(ωi) cos θidωi, (5.3)

where Li(ωi) is the illumination from the direction ωi, ft(·) represents how much light is

scattered from the direction ωi to the outgoing direction ωo. W0, g, and n are the albedo,

the Henyey-Greenstein parameter, and the refractive index of the lens dirt. They are the

material properties of the lens dirt, which are less likely to be spatially-varying over a

camera lens. Therefore, we treat W0, g, and n as constants for the lens dirt.

Since the scattered light Iα(x) corresponds to L
(2)
t (Equation (4.6) on page 60), the

function ft(·) can thus be approximately simplified as

ft (ωi, ωo; τ) ≈ k2 ·
τ

cos θo cos θi
· p(ωi, ωo), (5.4)

where p(·) is the phase function and k2 is a scale factor determined by W0 and n. This

simplification is achieved because for small τ we have e−τ ≈ 1 − τ . We also note that

θo = θ(x).

Our second assumption is isotropic scattering (i.e., p(·) = 1
4π ). Moreover, we assume

the field of view of the camera is narrow(i.e., θ(x) ≈ 0). With these assumptions, ft(·) now

is only a function of the optical thickness pattern τ(·). Thus, we have

Iα(x) ≈ ft(τ(x)) ·

∫

ωi

Li(ωi)dωi = ft(τ(x)) · c, (5.5)

where

c =

∫

ωi

Li(ωi)dωi, (5.6)
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is the aggregate of the outside illumination. The narrow field-of-view assumption can also

be used to simplify α(x) (Equation (5.2)) as α(x) ≈ k1 exp (−τ(x)). Finally, since α is a

function of the optical thickness τ , ft(τ) can be written instead as a function of α:

Iα(x) = c · f (α(x)) , (5.7)

where we emphasize that both Iα(x) and α(x) are spatially-varying while c is a fixed vector.

The function f (α(x)) depends on the physical characteristics of the contaminants.

This relationship between Iα(x) and α(x) is important, because it indicates that only

the aggregate of the outside illumination c is relevant for the intensification. In other words,

the intensification Iα(x) is a global effect of the outside illumination, which is not directly

related to the artifact-free image I0(x).

Validation Experiment: We validated the simplified model in Equation (5.7) by sep-

arating the attenuation and scattering components using an approach inspired by Nayar

et al. [2006]. As shown in Figure 5.3, we project a sequence of slightly shifted checkerboard

patterns and take pictures of the checkerboard modulated scene with a dirty lens camera.

Scene points in black squares do not themselves emit light and thus their corresponding

pixel intensities are caused by the scattering due to lens dirt. In contrast, pixel intensities

of scene points in white squares include both the light emitted by themselves (after atten-

uation due to lens dirt), and the light scattered by the lens dirt. The amount of scattered

light is fixed since the integral of the outside illumination is unchanged. Therefore, letting

Imax(x) and Imin(x) denote the point-wise maximum and minimum over all the pictures, we

have

Imax(x) = I0 · (α(x) ∗ k(x)) + Iα(x) ∗ k(x) and Imin(x) = Iα(x) ∗ k(x).

Their difference, Imax(x)− Imin(x), should equal the attenuation pattern α(x) (up to a scale

I0). Figure 5.3 shows the separation results for these components, respectively. As can be

seen, the intensification term, Imin(x), does not relate to the background scene. Moreover,

according to the simplified model, Imax(x) + Imin(x) should equal a fully-illuminated image

(i.e., an image captured when we project a white pattern). This is also verified and shown
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(a) Input images (b) Imax(x) (c) Imin(x) (20x)

(d) Imax(x) − Imin(x) (e) Imax(x) + Imin(x) (f) Fully-illuminated image

Figure 5.3: Experimental validation of Equation (5.7). (a) A sequence of shifted checker-

board patterns are projected on a scene. (b) The point-wise maximum of the captured

images, Imax(x), includes both the attenuation and the scattering. (c) The minimum of

the captured images (amplified 20 times for demonstration), Imin(x), directly measures the

scattering of the lens dirt. (d) The attenuation can be simply computed as Imax(x)−Imin(x).

As shown in (c), the scattering is related only to the attenuation pattern, and not the back-

ground scene. (e) shows Imax(x) + Imin(x), and (f) is the image captured when we project

a white pattern on the scene. (e) should equal to (f) because the checkerboard patterns

turn on half the projector pixels and thus the scattering in (c) is half of the scattering in

(f) while the attenuation keeps the same. Indeed, we found (e) and (f) are closely matched

with a mean absolute percentage error 0.6%.
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in Figure 5.3(d)(f) with a mean absolute percentage error of 0.6%. Therefore, our simpli-

fied model is validated: only the aggregate of the outside illumination is relevant to the

intensification, i.e., Iα(x) = c · f(α(x)).

Finally, we note that the defocus blur kernel k(x) can be assumed to be fixed for a given

dirty lens camera, since the distance from the contaminant layer to the optical center is

usually fixed, and is much smaller than the distance from the scene to the optical center.

Thus we can further simplify the model in Equation (5.1) by defining two variables — the

attenuation map a(x) := α(x) ∗ k(x) and the intensification map b(x) := f(α(x)) ∗ k(x).

The model can then be rewritten as:

I(x) = I0(x) · a(x) + c · b(x), (5.8)

where a(x) and b(x) are the characteristics for a given camera and will be independent of

the scene, and c represents the aggregate of the outside illumination and is scene dependent.

Below, we propose two methods to estimate a(x) and b(x) for a given dirty-lens camera

— we only need to do this once, after which the image artifacts can be removed from a

single image taken with this camera.

5.4 Artifact Removal with Calibration

Suppose we have the access to the dirty lens camera. For example, we realize the pho-

tographs have artifacts afterwards but we still have the camera at hand (e.g., consumer

digital camera). Or, for some imaging systems (e.g., telescopes), the camera can be con-

trolled. In this case, we can use the same idea in the validation experiment, and directly

measure a(x) and b(x) by taking a set of pictures of some structured pattern (e.g., a checker-

board) at different positions

a(x) = Imax(x) − Imin(x) and b(x) = Imin(x), (5.9)

where Imax(x) and Imin(x) are the point-wise maximum and minimum over all the pictures.

Note that the estimate b(x) in Equation (5.9) has been scaled with the aggregate of the

outside illumination of the calibration scene which is a constant. Ideally, if the black and
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white pixels can be swapped exactly, only two pictures are needed. In practice, more pictures

can be taken to suppress noise around edges.

In order to remove artifacts from a new image, we need to estimate the aggregate of

the outside illumination c for the new scene. In fact, this is a fundamental issue — due to

the limitation of the field of view of the camera, only a (small) portion of the environment

light is captured in the input image. In other words, some information about the outside

lighting conditions, especially stray lights such as the sun, is missing in the input. Biases in

the estimation of c will often over-compensate the dirty-lens artifacts or do not completely

remove the artifacts, as shown in Figure 5.9(b).

To solve this problem, we incorporate some prior on natural images for estimating c.

Natural images are well known to have strong sparsity in their gradients [Rudin et al.,

1992; Levin et al., 2007]. Since the dirty-lens artifacts are low frequency (because of camera

defocus), if the artifacts were not completely removed, the recovered image would have

retained the low frequency pattern, resulting in a non-sparse image gradient. Therefore, we

can estimate c by enforcing the sparsity of the recovered image’s gradient (i.e., minimizing

its ℓ-1 norm):

c∗ = arg min
c

‖∇I0(x)‖1, (5.10)

where

I0(x) = (I(x) − c · b(x))/a(x). (5.11)

We first perform a simulation to verify the accuracy of the proposed method. As shown

in Figure 5.4, we generate a synthetic image with a dirty-lens artifact using the lens dirt

pattern extracted in Figure 5.3(c). The aggregate of the outside illumination is set to be

c = 0.80. Equation (5.10) is used to estimate c∗ and recover the artifact-free image I0(x),

as shown in Figure 5.4(b). The mean absolute percentage error of the recovered image is

0.44%. The plot in Figure 5.4(c) shows ‖∇I0(x)‖1 at different c. The optimal value of c is

estimated to be 0.802, an error of only 0.25%.

Figure 5.5 and Figure 5.6 show experimental results on real images taken with a Canon

EOS 20D camera. The camera is equipped with a Canon EF 50mm f/1.8 lens contaminated

with house dust powder and fingerprints (shown in the bottom right of Figure 5.5), thus

introducing significant artifacts in the captured images, as shown in Figure 5.6(a). To
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(a) Input image (b) Recovered image

0.22

0.08

0.16

0 0.8 1.6 2

(c) Estimate of c∗

Figure 5.4: Simulation results for estimating the aggregate of outside illumination c based

on Equation (5.10). (a) A synthetic image with a dirty-lens artifact is generated using the

lens dirt pattern extracted from Figure 5.3(c). (b) Equation (5.10) is used to recover an

artifact-free image, with a mean absolute percentage error of 0.44% compared to ground

truth. (c) A plot of ‖∇I0(x)‖1 versus c. The optimal estimate, c∗, has a 0.25% error

compared to the ground truth.

estimate the attenuation and scattering terms, we use a stripe pattern consisting of black and

white vertical stripes printed on a piece of paper. Sixteen pictures are taken at randomly-

shifted positions, as shown in Figure 5.5(b). The estimated attenuation map a(x) and

scattering map b(x) are shown in Figure 5.5(c) and Figure 5.5(d), respectively.

Given this calibration, we use Equation (5.10) to estimate c and recover the artifact-

free images. Four examples are given in Figure 5.6. As shown in the insets, the proposed

method effectively removes the artifacts caused by the dirty camera lens and reveals more

details in the original images. The method works well on photographs taken both indoors

and outdoors, and across a large range of outside illuminations.

5.5 Artifact Removal without Calibration

In situations where we do not have the access to the camera to perform the above calibration

(e.g., for post-processing existing photographs or videos), we propose a method based on

natural image statistics to estimate the attenuation map a(x) and scattering map b(x).

Let us first consider two neighboring pixels x1 and x2. Since both a(x) and b(x) are

smoothly-varying due to the large camera defocus, we have a(x1) ≈ a(x2) and b(x1) ≈ b(x2),
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Dirty Lens

Camera

Stripe Pattern

Shift

(a) Calibration setup

.

.

.

(b) Calibration images

(c) Attenuation map: a(x) (d) Scattering map: b(x)

Figure 5.5: Calibration of a dirty-lens camera. (a) The dirty pattern on the lens can be

measured by taking several pictures (≥ 2) of a stripe pattern, as shown in (b). With these

calibration images, we can estimate (c) the attenuation map a(x) and (d) the scattering

map b(x) for a dirty lens camera.
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(a) Input images (b) Recovered images (c) Insets

Figure 5.6: Removal of the dirty-lens image artifacts with calibration. Given the attenua-

tion map a(x) and the scattering map b(x) from the calibration, we can remove dirty-lens

artifacts for each input image. (a) are four input images, and (b) are the recovered im-

ages. The optimal estimates of the aggregate outside illumination are c∗ = [1.37, 1.35, 1.41],

c∗ = [1.19, 1.00, 0.74], c∗ = [1.82, 1.73, 1.58], and c∗ = [5.48, 5.41, 7.66], from top to bottom.

(c) shows the insets of the input and recovered images.
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and thus we have I(x1) − I(x2) ≈ (I0(x1) − I0(x2)) · a(x1). In other words, the magnitude

of the image gradient has been attenuated by a(x1), which can be stated more formally as:

∇I(x) = ∇ (I0(x) · a(x) + c · b(x))

= (∇I0(x)) · a(x) + I0(x) · (∇a(x)) + c · (∇b(x))

≈ (∇I0(x)) · a(x),

since both ∇a(x) ≈ 0 and ∇b(x) ≈ 0 due to the large camera defocus. This relationship

holds for every picture taken with the same dirty lens camera, and thus by computing the

averaged magnitude of the image gradient over all frames of a video (or a collection of

photographs), we have

Avg(|∇I(x)|) = Avg(|∇I0(x)|) · a(x), (5.12)

where Avg(·) represents the averaging operation over multiple images. Similarly,

Avg(I(x)) = Avg(I0(x)) · a(x) + c̄ · b(x), (5.13)

where c̄ is the averaged aggregate of the outside illumination over all frames and can be

absorbed in the estimate of b(x).

We now rely on natural image statistics to estimate both Avg(I0(x)) and Avg(|∇I0(x)|).

Since the probability distributions of image intensity and gradient for all pixels are similar

to each other, the averaged values (i.e., the expectations) for each of these pixels over a

sequence of images should also be similar to each other. This has been shown extensively

in previous studies [Burton and Moorhead, 1987; Torralba et al., 2008; Kuthirummal et al.,

2008], where the averaged images are smoothly-varying. This heuristic enables us to esti-

mate Avg(I0(x)) and Avg(|∇I0(x)|) from Avg(I(x)) and Avg(|∇I(x)|) via a simple iterative

polynomial fitting.2

Specifically, we model Avg(I0(x)) as a bivariate polynomial (x is a 2D variable represent-

ing the position of a pixel),
∑3

i=0

∑3
j=0 ai,ju

ivj , where u, v are normalized pixel coordinates

in [−1, 1] × [−1, 1]. In the first iteration, we use all the pixels whose values are among

2For mounted surveillance cameras, the averaged images will not be smoothly-varying but will have

certain structures of the scene, which can be used similarly as priors for the removal of lens dirt.
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the top 50% of Avg(I(x)) for least-square fitting. We then take the difference between

the fitted Avg(I0(x)) and Avg(I(x)). Those pixels whose residuals are within a threshold

(10% of its pixel value) are considered as “inliers” and used to perform least-square fitting

in the next iteration. We found that this method converges in 100 ∼ 200 iterations and

automatically finds the pixels in the dirt regions as “outliers”. The same method is used for

estimating Avg(|∇I0(x)|). Therefore, the attenuation map a(x) and scattering map b(x)

can be computed from Equations (5.12) and (5.13):

a(x) = Avg(|∇I(x)|)/Avg(|∇I0(x)|) and b(x) = Avg(I(x)) − Avg(I0(x)) · a(x). (5.14)

To remove artifacts for individual frames, we use the optimization shown in Equation (5.10)

to estimate the aggregate of the outside illumination, c∗, independently for each frame.

Figure 5.7 and Figure 5.8 show some experimental results. A Panasonic Lumix DMC3

camcorder was used to take videos at 24fps inside a park on an overcast rainy day. The

camcorder’s lens is contaminated with fingerprints, dust, and rain drop deposit. A 5-

minute clip is used for the computation, resulting in 5× 60× 24 = 7200 frames. The image

resolution is 1280×720. These frames are used to compute the averaged image and gradient

magnitudes, as shown in Figures 5.7(b)(c), and to estimate the attenuation map a(x) and

scattering map b(x), as shown in Figures 5.7(j)(k). Figure 5.8 shows several examples of

artifact removal from images, where (a) and (c) show the original frames and (b) and (d)

show the recovered images.

5.6 Further Post-Processing

For certain frames, the above algorithms sometimes introduce over-darkening and over-

brightening artifacts in the dirt regions, as shown in Figure 5.9(b). There could be multiple

causes — (1) Some of our assumptions might not hold for the scene, such as the dirt

might not be optically-thin layer nor isotropic scattering, or the camera has a wide field

of view. (2) The outside illumination might be extremely uneven. For example, some

dirt regions might cover the bright sky while others cover the ground or bushes that are in

shadow. Since many types of contaminants are forward scattering (e.g., lipids, dermis, water

droplets) [Ishimaru, 1978; Jacques et al., 1987], the unevenly distributed outside lighting
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(a) Input video (b) Avg(I(x)) (c) Avg(‖∇I(x)‖)(20x)

(d) Iteration 5 (e) Iteration 10 (f) Iteration 15 (g) Iteration 20

(h) Avg(I0(x)) (i) Avg(‖∇I0(x)‖)(20x) (j) a(x) (k) b(x)

Figure 5.7: Estimation of the attenuation map a(x) and the scattering map b(x) from a

video taken with a dirty lens camera. (a) The input is a 5-min long video clip, consisting of

7200 frames. (b) The averaged image over all the frames. (c) The averaged image gradient

(amplified 20 times for demonstration) over all the frames. (d)-(g) show the intermediate

results of the iterative polynomial fitting where the black pixels in the images are the

“outliers” corresponding to the “dirt” regions in captured images. (h) and (i) show the

fitting results, and (j) and (k) show the estimated attenuation map a(x) and the scattering

map b(x).
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(a) Original (b) Recovered (c) Original (d) Recovered

Figure 5.8: Removal of the dirty-lens image artifacts from a video without calibration.

Based on the estimated attenuation map and the scattering map, dirty-lens artifacts can

be removed for each frame. We show several examples where (a) and (c) are the original

frames, and (b) and (d) are the recovered images.
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(a) Input frames (b) Original algorithm (c) Extended algorithm

Figure 5.9: Post-processing for unevenly distributed environment lighting. (a) The outside

illumination for certain frames is unevenly distributed, causing the intensification Iα(x)

to no longer be independent of the scene texture. (b) Consequently, for these frames,

the original algorithm sometimes over-compensates for the dirt regions and causes over-

darkening or over-brightening. (c) By modeling the scene texture term in Iα(x) as shown in

Equation (5.16), we effectively overcome the problem of over-darkening and over-brightening

(w = 0.3).



CHAPTER 5. REMOVING DIRTY-LENS IMAGE ARTIFACTS 99

causes the intensification Iα no longer independent of the scene texture (Equation (5.7)).

(3) While priors on natural images are correct in a statistical sense (i.e., they work for

most images), they might be invalid for some specific examples. When one of these causes

happens, while the algorithm tries to remove artifacts for the entire image, it might over-

compensates for some regions and causes the over-darkening and over-brightening.

There is not much we can do to solve the problem caused by (1) and (3) for auto-

matic methods, unless we incorporate more general scattering models, or allow some user

interaction to select the optimal c∗ with a simple slider.

We now focused on the post-processing for solving the problem caused by (2), since

extreme lighting condition is commonly seen in real photographs and videos. We extend

the current model by explicitly modeling the forward scattering. We replace the phase

function in Equation (5.4) with a simplified Delta-Eddington [Joseph et al., 1976] function

p(ωi, ωo) ≈ (1−w)+ w · δ(ωi −ωo), where w is the weight coefficient. Substituting this into

Equation (5.3), we have:

Iα(ωo) = f1(τ) · (c + w · I0(ωo)) , (5.15)

where each outgoing direction ωo corresponds to one pixel x, and thus it can be equivalently

written as

Iα(x) = (c + w · I0(x)) · f (α(x)) . (5.16)

Note that since the Delta-Eddington function is an approximation of the real scattering

(which often results in a lower-frequency of the incident light Li(ωi)), the weight w will not

only be determined by the material properties of lens dirt, but it will also change according

to the distribution of outside illumination Li(ωi).

Compared with Equation (5.7), the aggregated outside illumination is changed from c

to c + w · I0(x). Accordingly, Equation (5.11) is modified (approximately) as

I0(x) = (I(x) − c · b(x))/(a(x) + w · b(x)). (5.17)

The value of w is fixed by trial and error. We found w = 0.2 ∼ 0.8 gives good results.

Although w can be estimated for each frame together with c via Equation (5.10), estimating

from individual frames might cause spurious flickering and is time-consuming. Also, w

usually varies quite smoothly within the video sequence. Thus we assume w the same
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value for an input video sequence and search its value by trial and error. As shown in

Figure 5.9(c), this extension effectively overcomes the problem of over-darkening and over-

brightening. Compared with the results of the original algorithm shown in Figure 5.9(b),

although there are slightly more dirty-lens artifacts remained in the recovered images, the

overall quality is higher.

5.7 Summary and Discussion

In this work, we studied image artifacts caused by taking pictures with dirty camera lenses,

which can be modeled as an intermediate layer between the camera lens and the target

scene that both attenuates the background scene and intensifies the resulting image. Based

on this image formation model, we devised two automatic methods to remove the artifacts

from images without user interaction, either with a simple calibration step, or by relying

on the statistics of natural images for post-processing existing images or videos.

There are several limitations to our methods.

Not yet a single image approach: As shown in the image formation model in Equa-

tion (5.1), since there are four unknowns for one equation, it is challenging to recover the

clean image from a single input image. To estimate the attenuation map a(x) and the

scattering map b(x) of a dirty camera lens, the two proposed methods require either a cali-

bration step or multiple images taken with the same dirty lens camera. Once a(x) and b(x)

are known, we rely on natural image priors to find the optimal estimate of the aggregate of

the outside illumination c and remove the artifacts for each input image. As explained in

Section 5.6, the automatic estimation of c for some images might not be accurate.

To make the proposed algorithms more robust and also to develop single image based

methods, one possible approach is to incorporate more natural image priors, such as the

dark channel prior [He et al., 2009]. For certain applications such as consumer photograph

software, we can also allow some user interaction to improve result quality.

Noise amplification: In our approach for the removal of dirty-lens artifacts, the artifact-

free image I0(x) is computed as (I(x)− c · b(x))/a(x). Since a(x) is less than 1 where there
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is lens dirt, the amount of noise in those recovered pixels will be amplified by 1/a(x) times.

For example, some color noise can be observed in the regions with the greatest amount of

lens dirt in Figure 5.6 and Figure 5.8. In fact, this is a common and fundamental problem

for almost all point-wise image enhancement operations [Treibitz and Schechner, 2009].

To suppress this amplification of noise during the process of removing dirty-lens artifacts,

standard high-frequency preserving operations such as bilateral filtering can be performed

afterwards. Moreover, it is recommended to take high dynamic range images when possible.
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Chapter 6

Recovering Volume Densities for

Dynamic Participating Media

In the previous chapters, we studied time-varying appearance for opaque and transparent

surfaces. While the time-varying appearance for surfaces is usually due to the change in

their surface reflectance/transmittance properties, for participating media, such as smoke,

clouds, smog, and seawater, their time-varying appearance is mainly because of the change

in their volume densities.

In computer graphics, fluid simulation has often been used to to reproduce these dynamic

participating media [Stam, 1999; Fedkiw et al., 2001]. The drawback, however, is that it

requires considerable amount of work for users to specify external forces (such as air turbu-

lence) to generate realistic, intricate patterns over time (such as smoke ribbons). Therefore,

in this chapter, we performed a “data-driven” approach and proposed a structured light

method to measure the volume densities from real samples. We aimed at low-density par-

ticipating media (such as diluted milk) for which we exploited its sparsity to achieve a

higher efficiency for acquisition.

6.1 Introduction

Unlike in the case of an opaque object, for participating media, each pixel receives scattered

light from all points along the line-of-sight within the volume. This makes it challenging to
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recover the volume density of a participating medium.

One typical approach is tomography, which acquires 2D projections of the 3D volume

from multiple views and uses Fourier slice theorem to reconstruct the volume. Ihrke and

Magnor [2004, 2006] used eight views to measure flames. Trifonov et al. [2006] proposed

to recover transparent objects (immersed in water) with 72 ∼ 360 views. By assuming

flames are 2D surfaces, Hasinoff and Kutulakos [2007] used two views to reconstruct flames

using dynamic programming. A comprehensive survey of this area can be found in Ihrke

et al. [2008]. While tomography is desirable for measuring static volumes, for recovering

dynamic, fast-changing non-emissive volumes (e.g., smoke), it requires multiple accurately

calibrated and synchronized high-speed cameras and light sources, spanning around the

working volume — this is both expensive to set up and also limits the total number of

cameras (and thus the total number of 2D projections) we can place around.

Another approach is to recover volume densities from a single view, using active illu-

mination. Hawkins et al. [2005] used a high-powered laser sheet and a high-speed camera

(5000fps) to measure slices of smoke volumes via scanning, by trading off the temporal res-

olution for the spatial resolution of the volume. A similar technique called Laser-Induced

Fluorescence (LIF) has also been used in the fluid imaging [Deusch and Dracos, 2001]. Fuchs

et al. [2007] proposed the idea of shooting a set of static laser rays into the volume and us-

ing interpolation to reconstruct the volume — as expected the measurements are inherently

sparse in this case and hence the recovered information is low in spatial resolution.

Our method belongs to the single view approach. We show that by using coded light

patterns, one can make the measurement of a participating medium more efficient in terms

of acquisition time as well as illumination power. In particular, we exploit the fact that the

brightness measurements made at image pixels correspond to true line-integrals through

the medium (see Figure 6.1(a)), and then solve for its volume density. We consider both

spatially- and temporally-coded light patterns. Because the patterns are predetermined,

measurement and reconstruction time are decoupled. We target low-density inhomogeneous

media, for which the density function is sparse in an appropriately-chosen basis1; this allows

1“sparse” does not necessarily imply that the volume density must be sparsely distributed in space. It

means that the density can be represented with a few non-zero coefficients in an appropriately-chosen basis,
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Figure 6.1: (a) Compressive structured light for recovering inhomogeneous participating

media. Coded light is emitted along the z-axis to the volume while the camera acquires

images as line-integrated measurements of the volume density along the x-axis. (b) Image

formation for diluted participating medium. Image irradiance at one pixel, I(y, z), depends

on the integral along the x-axis of the projector’s light, L(x, y), and the medium density,

ρ(x, y, z), along a ray through the camera center (refer to Equations (6.3) and (6.4)).

us to harness compressive sensing techniques [Candes and Romberg, 2007; Donoho, 2006]

that accurately reconstruct a signal from only a few measurements. We refer to our approach

as compressive structured light.

We show that compressive structured light is more economical than a straightforward

sequential scanning of a volume. Whereas the sampling rate of the latter is limited by the

desired resolution, the sampling rate of the former is restricted by the sparsity of the data–

a considerably more relaxed constraint for low-density phenomena. Since our approach

requires fewer measurements, it naturally enables the recovery of dynamic participating

media. An added advantage of compressive structured light, is that it requires the projection

of multiplexed coded illumination which results in measurements with higher signal-to-noise

ratio [Schechner et al., 2003b]. An important practical consequence is that light sources of

such as, wavelets, gradients, principal components, etc.
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significantly lower power than in the case of sequential scanning can be used.

We have implemented our approach using a digital projector and a camera. A schematic

diagram is shown in Figure 6.10(a). The projector and the camera are synchronized and

both operate at 360fps. Using 24 coded light patterns, we are able to recover a 128×128×128

volume at 15fps. Using this system, we have recovered various types of inhomogeneous

participating media, including, multiple translucent layers, a 3D point cloud of a face etched

in a glass cube, and the dynamic process of milk mixing with water.

6.2 Image Formation Model

Let us first derive the relationship between the volume density ρ(x, y, z) and the image irra-

diance I(y, z) of the camera under our camera/projector setting. We focus on non-emissive,

diluted participating media, in which multiple scattering is assumed to be negligible.

As shown in Figure 6.1b, each camera pixel receives light scattered from a row of voxels

along the line of sight in the volume (i.e., the red line in Figure 6.1b). For simplicity, we

assume the camera and the projector are placed sufficiently far from the working volume,

and thus they are orthographic projection. The distortion caused by perspective projection

can be corrected with a calibration step, if needed.

Consider one voxel ρ(x, y, z) in the row. Light emitted from the projector is first attenu-

ated as it travels from the projector to the voxel, scattered at the voxel, and then attenuated

as it travels from the voxel to the camera. Assuming single scattering, the radiance sensed

by the camera from this particular voxel is [Ishimaru, 1978]

L(x, y) · exp(−τ1) · σs · ρ(x, y, z) · p(θ) · exp(−τ2), (6.1)

where ρ(x, y, z) is the volume density (i.e., density of particles) at the voxel, p(θ) is the

phase function (θ = π/2 since the camera and the projector are perpendicularly placed),

and τ1 and τ2 are the optical thicknesses from the projector to the voxel and from the voxel

to the camera; σs is the scattering cross section of the participating medium. Since σs and

p(θ = π/2) are the same for all voxels, the above formula can be simplified to (up to a scale

σs · p(θ = π/2))

L(x, y) · exp (−(τ1 + τ2)) · ρ(x, y, z). (6.2)
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The image irradiance, I(y, z), which is the integral of the scattered light from all the voxels

along the line, is therefore

I(y, z) =

∫

x
L(x, y) · exp (−(τ1 + τ2)) · ρ(x, y, z)dx. (6.3)

For highly diluted media (i.e., ρ → 0), because the optical thicknesses τ1 and τ2, which

are proportional to the density ρ, are close to 0, the attenuation term usually can also

be ignored (i.e., exp (−(τ1 + τ2)) ≈ 1)for the recovery of volume densities [Hawkins et al.,

2005; Fuchs et al., 2007]. In this case, Equation (6.3) is reduced to a linear projection of

the illumination and the volume density,

I(y, z) ≈

∫

x
ρ(x, y, z) · L(x, y) dx. (6.4)

For denser media, we have to consider the attenuation term. We present a iterative method

to correct for the attenuation in Section 6.4.3.

6.3 Sparsity of Participating Media

As mentioned in Section 6.1, the sparsity in the volume densities of diluted participating

media (e.g.smoke, mixing liquids) has been employed for efficient acquisition. Qualitatively,

the assumption of sparsity is reasonable since often only a small portion of the entire volume

has non-zero density.

To quantitatively justify the use of the sparsity for reconstruction, in this section, we

compute the sparsity of two sequences of time-varying participating media measured by

other researchers. One sequence is flame measured by Ihrke and Magnor [2004] and the

other sequence is smoke measured by Hawkins et al. [2005]. Although these are not the

volumetric phenomena we recovered in our experiments, they have similar characteristics in

the time-varying volume densities, and thus can give us some estimate about the sparsity

of our subjects. Moreover, we compute the sparsity of the same signals at different bases

— this will also give us insights of which space is the best for sparse reconstruction.

The key is how to compute sparsity for a given signal. While the definition of sparsity is

the number of non-zero elements (i.e., ℓ-0 norm), this is not suitable for signals with noise.

While ℓ-1 norm has been used for sparse reconstruction, it is not normalized and thus not
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Figure 6.2: Sparsity (i.e., the Gini index) of two measured dynamic participating media: (a)

flame [Ihrke and Magnor, 2004]; (b) smoke [Hawkins et al., 2005]. For each volume in the

two measured sequences, we compute the Gini index for each row of the volume and average

them as a sparsity measure of the volume. Three types of bases are used — the value of the

volume density itself, the gradient of the volume density, and the Haar wavelet transform

of the volume density. As shown, these two dynamic phenomena have consistently large

sparsity over time, especially in their values and gradients.

good for comparing the sparsity of two signals or two sets of bases. A thorough discussion

about the measures for sparsity can be found in [Hurley and Richard, 2008], in which

they suggested Gini index as the sparsity measure. Gini index was originally proposed in

economics as a measure of the inequality of wealth [Gini, 1921]. It is normalized (its value

in between 0 and 1), and it is robust to noise. Given a vector, x = [x1, x2, x3, · · · , xN ], we

take its absolute value and sort the elements from smallest to largest, |x|(1) ≤ |x|(2) ≤ · · · ≤

|x|(N). The Gini index of the signal x is defined as:

G(x) = 1 −
2
∑N

k=1 |x|(k) · (N − k + 0.5)

N
∑N

k=1 |x|(k)

. (6.5)

The higher G(x) is, the more sparse the signal is. More properties of Gini index measure

can be found in [Hurley and Richard, 2008].

We compute the Gini indices for all the rows of each volume and average them as

the sparsity of the volume. Figure 6.2 shows the sparsity for the two data sets (Fig-
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Figure 6.3: Different coding strategies of the light L(x, y) at time t for recovering inhomo-

geneous participating media: (a) scan (one stripe turned on) [Deusch and Dracos, 2001;

Hawkins et al., 2005]; (b) laser-lines interpolation (one pixel turned on per one row) [Fuchs

et al., 2007]; (c) Spatial coding of compressive structured light (all pixels are turned on

with random values per time frame); (d) Temporal coding of compressive structured light

(random binary stripes are turned on per time frame). Compressive structured light, shown

in (c) and (d), recovers the volume by reconstructing the 1D signal along x-axis from a few

integral measurements. It utilizes the light more efficiently and thus makes the measurement

process highly efficient both in acquisition time and illumination power.

ure 6.2(a) for the flame sequence [Ihrke and Magnor, 2004] and Figure 6.2(b) for the smoke

sequence [Hawkins et al., 2005]). Three types of bases are used to compute the Gini index

— the value of the volume density itself, the gradient of the volume density, and the Haar

wavelet transform of the volume density. As shown in Figure 6.2, we found that: (1) over

the entire sequence, the two dynamic participating media has consistently high sparsity

(≥ 0.95). (2) Compared with the Haar wavelet, the volume densities have higher sparsity

in their value and gradients. These observations help us design the acquisition system.

6.4 Compressive Structured Light

Unlike the conventional structured light methods for surface recovery where each camera

pixel receives light reflected from one point, for participating media, each camera pixel re-

ceives light from all points along the line of sight within the volume. Thus each camera

pixel is an integral measurement of one row of the volume density. Whereas conventional



CHAPTER 6. RECOVERING TIME-VARYING VOLUME DENSITIES 109

structured light range finding methods seek to triangulate the position of a single point,

compressed structured light seeks to reconstruct the 1D density “signal” from a few mea-

sured integrals of this signal.

This is clearly a more difficult problem. One way to avoid this problem is to break the

integrals into pieces which can be measured directly. The price, however, is the deterioration

of either spatial resolution or temporal resolution of the acquisition. Existing methods either

illuminate a single slice at a time and scan the volume (see Figure 6.3(a) and [Deusch and

Dracos, 2001; Hawkins et al., 2005]), thus sacrificing temporal resolution, or they illuminate

a single pixel per row and use interpolation to reconstruct the volume (e.g., Figure 6.3(b)

and [Fuchs et al., 2007]), sacrificing spatial resolution.

In contrast, the proposed compressive structured light method uses the light much more

efficiently, projecting coded light patterns that yield “signatures,” or integral measurements,

of the unknown volume density function.

The didactic illustration in Figure 6.1(a) depicts a simple lighting/viewpoint geometry

under orthographic projection, with the camera viewpoint along the x-axis, and the pro-

jector emitting along the z-axis. Consider various coding strategies of the 3D light function

L(x, y, t): Spatial codes (Figure 6.3(c)) recover the volume from a single image by trading

spatial resolution along one dimension; Temporal codes (Figure 6.3d) trade temporal res-

olution by emitting a sequence of vertical binary stripes (with no coding along y-axis), so

that full spatial resolution is retained. All of the four methods shown in Figure 6.3 can be

equally improved using color channels.

In the following, we will see that these compressive structured light codes yield high

efficiency both in acquisition time and illumination power; this comes at the cost of a more

sophisticated reconstruction process, to which we now turn our attention.

6.4.1 Coding and Formulation

To better visualize our formulation, consider first the case of spatial coding. Suppose we

want to reconstruct a volume at the resolution n × n × n (e.g., n = 100). The camera and

the projector have the resolution of M ×M pixels (e.g., M = 1024). Therefore, one row of

voxels along the x-axis (refer to the red line in Figure 6.1a) will receive light from m = M/n
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(e.g., m = 1024/100 = 10) rows of the projector’s pixels. The light scattered by these voxels

in the viewing direction will then be measured, at each z-coordinate, by a vertical column

of m camera pixels. Without loss of generality, we use l1 = L(x, 1), · · · , lm = L(x,m) to

denote the m rows of pixels from the projector, and b1 = I(1, z), · · · , bm = I(m, z) to denote

the image irradiance of the m pixels in the camera image. Let x = [ρ1, · · · , ρn]T be the

vector of the voxel densities along the row. Assuming no attenuation for now, the image

irradiance for each of these m pixels is a linear projection of the light and the voxels’ density

from Equation (6.4):

bi = lTi x, i = 1, · · · ,m. (6.6)

Rewriting these m equations in matrix form, we have:

Ax = b, (6.7)

where A = [l1, · · · , lm]T is a m × n matrix, b = [b1, · · · , bm]T is a m × 1 vector.

Thus, if attenuation is not considered, the problem of recovering the volume is formu-

lated as the problem of reconstructing the 1D signal x given the constraints Ax = b. To

retain high spatial and temporal resolution, we often can only afford far fewer measurements

than the number of unknowns, i.e., m < n, which means the above equation is an under-

determined linear system and optimization is required to solve for the best x according to

certain priors.

One benefit of this optimization-based reconstruction is high efficiency in acquisition,

which we quantify using the measurement cost, m/n, where m is the number of the measure-

ments and n is the number of unknowns (i.e., the dimension of the signal). For example,

the measurement cost of the scanning method [Deusch and Dracos, 2001; Hawkins et al.,

2005] is one. We show that by exploiting the sparsity of the signal, we can reconstruct the

volume with much lower measurement cost (about 1/8 to 1/4).

6.4.2 Reconstruction via Compressive Sensing

Solving the underdetermined linear system requires some prior (assumed) knowledge of

the unknown signal, which can be represented as optimization functionals or constraints

on the data. We consider several alternatives, as listed in Table 6.1. In addition to the
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Table 6.1: Objective functionals used for volume reconstruction

Method Optimization Functional Constraints

Least Square (LS) ‖Ax − b‖2

Nonnegative Least Square (NLS) ‖Ax − b‖2 x ≥ 0

CS-Value ‖x‖1 Ax = b, x ≥ 0

CS-Gradient ‖x′‖1 Ax = b, x ≥ 0

CS-Both ‖x‖1 + λ‖x′‖1 Ax = b, x ≥ 0

commonly-used Least Square (LS) and Nonnegative Least Square (NLS) approaches, we

also consider functionals using ℓ1-norms, as these bias toward sparse representation, based

on our observations on the sparsity of some dynamic participating media (Section 6.3).

First, we observe that for many natural volumetric phenomena, often only a small

portion of the entire volume is occupied by the participating media. For example, consider

the beautiful ribbon patterns generated by smoke; similarly, sparsity was implicitly used to

reconstruct (surface-like) flames [Hasinoff and Kutulakos, 2007]). This suggests the use of

the ℓ1-norm of the signal value (CS-Value).

Furthermore, from Figure 6.2 we also observe high sparsity in the gradients of the volume

densities. The sparsity of gradients of natural images is well studied [Olshausen and Field,

1996; Simoncelli, 1997] and shown to work well for image restoration [Rudin et al., 1992].

In this vein, we consider the use of ℓ1-norm on the signal’s gradient (CS-Gradient).

Finally, consider a dynamic process, such as milk dissolving in water: here diffusion de-

creases the signal value’s sparsity over time, but it increases the gradient sparsity. Motivated

by this observation, we consider the linear combination of ℓ1-norms of both the value and

the gradient (CS-Both). The objective function is thus defined as |x|1+λ|x′|1, where λ is the

weight. In order to obtain a one-to-one mapping from the gradient domain to the original

signal, the gradient x′ is defined as a (n + 1) × 1 vector consisting of both the differentials

and the first and the last element of x, i.e., x′ = [ρ1, ρ2 − ρ1, ρ3 − ρ2, · · · , ρn − ρn−1, ρn],

where x = [ρ1, · · · , ρn].

To understand these objective functionals intuitively, let us consider a simple example
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Figure 6.4: Geometric interpretation of the objective functionals for a 2 × 1 vector x =

[x1, x2]. Suppose we only have one measurement a1x1 +a2x2 = b. The least square solution

minimizes ||x||2, which is often non-sparse. The CS-Value solution minimizes ||x||1 and

will be on one of the two axes which is sparse. The CS-Gradient solution minimizes ||x′||1,

which in this case will be the intersection point with the diagonal line x1 = x2 and is sparse

in its gradient. Finally, the CS-Both solution allows solutions both on the two axes and the

diagonal lines. The exact solution depends on the relative sparsity of the signal in its value

or its gradient.
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Figure 6.5: To find the optimal λ value for the functional |x|1 + λ|x′|1, we run simulation

on the smoke sequence [Hawkins et al., 2005]. This plot shows the average reconstruction

error for λ from 0.0 to 3.0, and we set λ = 1 in our experiments.

where x is a 2× 1 vector, x = [x1, x2], and assume x1 ≥ 0, x2 ≥ 0. As shown in Figure 6.4,

suppose we only have one measurement a1x1 + a2x2 = b which tells us the solution of x

should be on a line. The least square solution minimizes ||x||2 and it will be the tangential

point between the line a1x1 + a2x2 = b and the circle, which is less likely to be sparse. The

CS-Value solution minimizes ||x||1, and it will be the intersection point between the line

a1x1+a2x2 = b and the x2 axis, which is sparse (i.e., one element is zero). The CS-Gradient

solution minimizes ||x′||1, and in this case it will be the intersection point between the line

a1x1 + a2x2 = b and the diagonal line x1 = x2, which is sparse in the gradient. Finally,

the CS-Both solution finds a trade-off between CS-Both and CS-Gradient. It allows sparse

solutions both on the two axes and the diagonal line. Its exact shape depends on the weight

λ, as shown in Figure 6.4. The optimal weight λ should be set to the ratio between the

sparsity in the signal’s gradient and the sparsity in the signal’s value.

To find the optimal λ, we run simulation on the smoke sequence [Hawkins et al., 2005].

For each simulation, we fix the measurement cost m/n = 1/4 and generate the matrix A

with Gaussian random variables. We then reconstruct the volume densities by minimizing

the objective functional |x|1 + λ|x′|1 at multiple λ values. This simulation is performed for
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all rows of each volume, and the averaged reconstruction error is computed for each λ value.

As shown in Figure 6.5, λ = 1 gives the minimal reconstruction error overall, and thus we

set λ = 1 in the following simulations and experiments.

6.4.3 An Iterative Algorithm for Attenuation Correction

Until now, we have not yet considered the attenuation in the image formation model in

Equation (6.3). To take into account attenuation, we use a simple iterative linearization

algorithm as follows:

1. Assume no attenuation, solve the optimization problem with techniques from Sec-

tion 6.4.2 to get the initial reconstruction of the volume density ρ(0)(x, y, z).

2. At iteration k, compute the attenuated light as:

L(k)(x, y, z) = exp (− (τ1 + τ2)) · L(x, y),

where τ1 and τ2 are the optical thicknesses which can be computed using the volume

density from the previous iteration ρ(k−1)(x, y, z) as

τ1 = (σa + σs)

∫

z
ρ(k−1)(x, y, z) dz, τ2 = (σa + σs)

∫

x
ρ(k−1)(x, y, z) dx, (6.8)

where σa and σs are the absorption cross section and the scattering cross section of

the medium, which are assumed to be known They can be measured by a second

camera taking the shadowgraph of the volume.

3. With the attenuated light L(k)(x, y, z), Equation (6.3) becomes a linear equation. We

solve for ρ(k)(x, y, z) and go to next iteration until it converges. In practice, we found

that the algorithm usually converges within 3-4 iterations.

Since our method accommodates the scanning method [Deusch and Dracos, 2001; Hawkins

et al., 2005] and the interpolation method [Fuchs et al., 2007] as special cases, the iterative

algorithm could be directly applied to these prior methods as well.
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Figure 6.6: Comparison of the objective functionals for volumetric reconstruction. The

first column is the original signal. The remaining columns show reconstruction results

(red dashed lines) for different methods, given the measurement cost, m/n, is equal to

1/4. The value below each plot is the NRMSE (Normalized Root Mean Squared Error) of

reconstruction.
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6.5 Validation with Simulation

In this section, we perform simulations in order to compare the several objective functionals

shown in Table 6.1 and validate their accuracy. Comparison of these reconstruction methods

is first performed on 1D synthetic signals. These signals are randomly sampled rows from the

volume density of smoke acquired in [Hawkins et al., 2005]. We restrict the measurement

cost, m/n, to be 1/4. The measurement ensemble, A, is generated in a way that each

element is drawn independently from a normal distribution and each column is normalized

to 1, which is effectively a white noise matrix and is known to be good for compressive

sensing [Donoho, 2006]. Normalized Root Mean Squared Error (NRMSE) is used as the

measure of error, which is defined as:

NRMSE =
1

xmax − xmin

√

∑n
i=1(x̂i − xi)2

n
, (6.9)

where x̂i and xi are the i-th element of the reconstructed signal and the original signal,

respectively, and xmax − xmin is the range of the signal.

The reconstruction results are shown in Figure 6.6. The commonly-used LS performs the

worst, since it merely minimizes the errors without using any prior on the data. With the

nonnegative constraint added, NLS has better performance. CS-Value and CS-Gradient are

better than NLS given that both use one more prior—the sparsity on the signal value or on

the signal gradient. CS-Both(λ = 1) outperforms other methods due to its adaptive ability.

In our trials, the favorable performance of CS-Both was not very sensitive to changes of λ.

These observations carry over to the 3D setting (see Figure 6.7), where we reconstruct a

128 × 128× 128 volume; note that this requires 128× 128 independent 1D reconstructions.

The volume is generated from a triangular mesh of a horse and it is divided into 128×128×

128 voxels. For each voxel, if it is inside the mesh, the density is designed to be proportional

to the distance from the center of the voxel to the center of the mesh, otherwise the density

is 0 — we intentionally design the volume densities to be non-sparse (smooth-varying) in

order to test the algorithm. Figure 6.7(a) shows the volume where blue corresponds to the

lowest density while yellow corresponds to the highest density. A slice of the volume is

shown in Figure 6.7(b).

Both spatial coding and temporal coding of compressive structured light are tested.
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(a) Ground Truth

(b) Sample Slice

(c) Coded Image  (d) Reconstructed Slice (e) Reconstructed Volume at 2 Views

Spatial Coding of Compressive Structured Light

x

y

z

(g) Coded Image  (h) Reconstructed Slice (i) Reconstructed Volume at 2 Views

Temporal Coding of Compressive Structured Light

Figure 6.7: Simulation results of volumetric reconstruction using compressive structured

light. (a) The original volume where blue means the lowest density and yellow means the

highest density. (b) A slice of the volume. On the right, the top and the bottom row shows

the reconstruction results for spatial coding and temporal coding, respectively. For each

row, from left to right are the coded image acquired by the camera, the reconstruction of

the slice, and the reconstructed volume under two different views.
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Figure 6.8: (a) Reconstruction errors and (b) slices with iterative attenuation correction.



CHAPTER 6. RECOVERING TIME-VARYING VOLUME DENSITIES 118

The measurement cost, m/n, is fixed to 1/4. For spatial coding, we use a random color

image with resolution of 1280 × 1280 as the coded light from the projector. This gives us

m = 1280/128 × 3 = 30 measurements to recover densities of 128 voxels on one row of the

volume. Based on Equation (6.3), a single image is generated from the camera view and

used for reconstruction. For temporal coding, we use random binary stripes as illumination

and generate 32 images for reconstruction. CS-Both is used to reconstruct the volume

for both cases. As shown in Figure 6.7, both methods accurately reconstruct the volume.

Moreover, Figure 6.8 shows the reconstruction errors and reconstructed slices at different

iterations of attenuation correction, which demonstrates the effectiveness of the iterative

algorithm.

We also evaluate different reconstruction methods at various measurement costs from

1/16 to 1. The results are shown as a table in Figure 6.9. Conclusions similar to the ones

from the previous 1D signal simulation can be drawn from these results: (1) As expected,

all methods have improvements as the measurement cost increases. (2) Without using any

prior of the data, LS is the worst for reconstruction with insufficient measurements. (3) CS-

Gradient and CS-Both largely outperform other methods, especially for low measurement

cost, which indicates strong sparsity in the signal’s gradient. (4) CS-Both is better than CS-

Gradient, especially at low measurement cost (e.g., as shown in Figure 6.9 at m/n = 1/16).

Based on these preliminary simulations, we chose to run our actual acquisition experiments

with a measurement cost of 1/4 and the CS-Both optimization functional.

Table 6.2 shows the reconstruction error (NRMSE) for the CS-Both method for two

coding patterns (i.e., partial Hadamard code and random binary code) at different noise

levels. As shown, the CS-Both method is robust across multiple noise levels. When the

measurement cost is low, random binary code has better performance than the Hadamard

code. If we have enough measurement (i.e., the measurement cost is 1), the Hadamard code

has better performance, as expected [Schechner et al., 2003b]. In our experiments, we used

random binary coding pattern.
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1/16 1/8 1/4 1/2 1

LS

NLS

CS-Value

CS-Gradient

CS-Both

m/n

Figure 6.9: Comparison of the objective functionals at different measurement costs m/n.

CS-Both outperforms other methods.
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Table 6.2: NRMSE for two coding patterns at different noise levels

Noise Level Pattern
Measurement Cost (m/n)

1/16 1/8 1/4 1/2 1

σ = 0.001
Hadamard 0.077 0.041 0.021 0.0007 2.47e-05

Random 0.042 0.0063 0.0010 8.91e-05 3.13e-05

σ = 0.005
Hadamard 0.078 0.042 0.023 0.0014 0.0011

Random 0.043 0.008 0.0026 0.0017 0.0013

σ = 0.01
Hadamard 0.074 0.045 0.022 0.0026 0.0020

Random 0.044 0.011 0.0042 0.0031 0.0023

Projector

Camera

Milk 

Drops

Figure 6.10: Experimental setup for compressive structured light. The projector and the

camera are synchronized.
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6.6 Experimental Results

We have implemented the temporal coding of compressive structured light for recovering

inhomogeneous participating media. Our system consists of a 1024 × 768 DLP projector

and a 640 × 480 Dragonfly Express 8-bit camera, positioned at right angles, both viewing

the inhomogeneous participating medium (milk drops in water). The projector and the

camera are synchronized and both operate at 360fps. The camera’s resolution is set to

320 × 140 in order to achieve 360fps. Using 24 coded light patterns, we are able to recover

a 128 × 128 × 128 volume at 15fps. These light patterns consist of 128 vertical stripes.

Each stripe is assigned 0 or 1 randomly with the probability of 0.5. In this way, about

half the amount of the light is turned on for each measurement. We also tried alternative

light patterns such as Hadamard codes, and found the random binary codes have better

performance. The 24 light patterns correspond to 24 randomly chosen rows from a 127×127

Hadamard matrix.

We used this system to recover several types of inhomogeneous participating media,

including, multiple translucent layers (Figure 6.11), a 3D point cloud of a face etched in a

glass cube (Figure 6.12), and the dynamic process of milk mixing with water (Figure 6.13).

The reconstructed volumes are visualized with the ray casting algorithm [Schroeder et al.,

2006] in which the opacity function is set to the volume density.

6.6.1 Recovery of Static Volumes

We first perform reconstruction on static volumes. Figure 6.11 shows the results of an object

consisting of two glass slabs with powder on both. The letters “EC” are drawn manually

on the back plane and “CV” on the front plane by removing the powder. Thus we create

a volume in which only two planes have non-zero density. A photograph of the object is

shown in Figure 6.11a. We then project coded light patterns on the object and reconstruct

the volume using the proposed method. Figure 6.11 shows one of the 24 captured images

as well as the reconstructed volume at different views. We show the reconstructed volume

with and without attenuation correction. It shows that attenuation correction improves the

results by increasing the density on the back plane.
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(a) Photograph

(b) Coded Image

View 1 View 2 View 3

Without Attenuation Correction

With Attenuation Correction

View 1 View 2 View 3

(c)

(d)

Figure 6.11: Reconstruction results of two planes. (a) A photograph of the object consisting

of two glass slabs with powder. The letters “EC” are on the back slab and “CV” on the

front slab. (b) One of the 24 images captured by the camera. Reconstructed volume at

different views with (c) and without (d) attenuation correction.
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(a) Photograph

(b) Coded Image

View 1 View 2 View 3

Without Attenuation Correction

With Attenuation Correction

View 1 View 2 View 3

(c)

(d)

Figure 6.12: Reconstruction results of a 3D point cloud of a face etched in a glass cube. (a) A

photograph of the object. (b) One of the 24 images captured by the camera. Reconstruction

results are shown on the right side in the same manner as Figure 6.11.
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Figure 6.12 shows the reconstruction for a 3D point cloud of a face etched in a glass

cube. As seen, our method achieved good reconstruction of the volume. In this example,

multiple scattering and attenuation within the point cloud are much stronger than the

previous example. As a result, in the reconstructed volume, the half of the face not directly

visible to the camera has a lower estimated density (e.g., the relative darker area of the

right eye and right forehead in Figure 6.12).

6.6.2 Recovery of Dynamic Volumes

Finally, we use our system to reconstruct time-varying volumes. We take the dynamic

process of milk drops dissolving in water as an example. We use a syringe to drip milk

drops into a water tank as shown in the adjacent figure. With the proposed method, we

are able to reconstruct time-varying volumes with high spatial resolution (128× 128× 250)

at 15fps, which recovers the interesting patterns of the dynamic process (see Figure 6.13).

6.7 Summary and Discussion

We proposed compressive structured light for recovering the volume densities of inhomo-

geneous participating media. Unlike conventional structured light range finding methods

where coded light patterns are used to establish correspondence for triangulation, com-

pressive structured light uses coded light as a way to generate measurements which are

line-integrals of volume density. By exploiting the sparsity of the volume density, the vol-

ume can be accurately reconstructed from a few measurements. This makes the acquisition

highly efficient both in acquisition time and illumination power, and thus enables the re-

covery of time-varying volumetric phenomena.

There are several limitations to our proposed compressive structured light formulation,

which need to be addressed in the future:

1. Multiple Scattering. Although utilizing more light elements increases the efficiency of

the acquisition, it will increase multiple scattering as well, which will cause biased re-

construction, as the artifacts shown in Figure 6.12. One potential way to alleviate this

problem is to separate multiple/single scattering by using more complex light codes
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Figure 6.13: Reconstruction of milk drops dissolving in water. 24 images are used to

reconstruct a 128×128×250 volume at 15fps. Three views are shown. Each row corresponds

to one instance in time. The leftmost column shows the corresponding photographs.
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in a similar way to [Nayar et al., 2006]. For example, instead of using vertical stripes,

one could use vertical 0/1-interleaved stripes and thus estimate the global illumination

from neighboring pixels. This, however, requires trading off spatial resolution.

2. Calibration for the Spatial Coding Method. The spatial coding seems more desirable

than the temporal coding due to its high temporal resolution (i.e., volume reconstruc-

tion from one single image) and the easy access of high spatial resolution devices.

However, it requires highly accurate calibration both geometrically and radiometri-

cally. The defocus of both the projector and the camera needs to be considered as

well. In contrast, the temporal coding method is more robust to noise and defocus

and easy to calibrate.

We view compressive structured light as a general framework for coding the 3D light

function L(x, y, t) for reconstruction of signals from line-integral measurements. In this

light, existing methods such as laser sheet scanning and laser line interpolation, as well

as the spatial coding and temporal coding discussed in this work, can be considered as

special cases. One interesting future direction is to design more complex coding strategies

to improve the performance or apply the method to new problems.
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Chapter 7

Conclusions

As shown in previous chapters, time-varying appearance of natural phenomena is important

for both computer graphics and computer vision. In this thesis, we have shown a systematic

study of time-varying appearance, including time-varying reflectance for opaque surfaces,

time-varying refraction for weathered transparent surfaces, and dynamic volumetric phe-

nomena.

7.1 Summary of Contributions

This thesis mostly follows the data-driven approach. The novel question we asked is how to

make data-driven approach more intelligent and efficient from measurement to modeling

to synthesis. In other words, we asked ourselves the following three questions during our

study:

• Measurement: instead of directly measuring samples sparsely in high dimensional

space, can we code the signal and measure them more efficiently? (Chapter 4 and

Chapter 6).

• Modeling: instead of simply tabulating the acquired high-dimensional data, can we

develop compact representations that are easy to control for rendering or convenient

for removing the effect? (Chapter 3 and Chapter 5).

• Synthesis: instead of interpolation for reproducing the acquired data, can we develop
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algorithms to create novel renderings for artistic control?(Chapter 3 and Chapter 4).

These three questions guided our study of time-varying appearance of natural phenomena,

as summarized below.

Time-Varying Reflectance for Opaque Surfaces: In Chapter 3, we take a significant

step toward measuring, modeling and rendering time-varying surface appearance. Using a

computer-controlled dome, we have acquired the first time-varying appearance database of

28 samples, encompassing a variety of natural processes including burning, drying, decay

and corrosion.

Our main technical contribution is a space-time appearance factorization model. This

model separates the spatial variation and the temporal variation from measured data. Ex-

periments show our model can accurately represent a variety of natural phenomena. It

enables a number of novel rendering applications, such as transfer of the time-varying effect

to a new static surface, accelerate temporal evolution, extrapolation beyond the acquired

sequence, and texture synthesis of time-varying appearance.

Weathered Appearance for Transparent Surfaces: In Chapter 4, we studied the

weathered appearance of transparent objects and constructed analytic models for its BRDF

and BTDF for real-time rendering. Based on the proposed models, we also developed

efficient acquisition methods to measure contamination patterns from a single image. The

models and the measured data are used to reproduce the weathered appearance in both 3D

renderings and 2D photographs.

The understanding of weathered appearance of transparent surfaces has been used to

remove the artifacts from photographs caused by dirty camera lenses, as shown in Chapter 5.

We took into account both the attenuation and the scattering of lens dirt and developed

two automatic methods to remove the artifacts and enhance images — either by taking

several pictures of a structured calibration pattern beforehand, or by leveraging natural

image statistics.

Efficient Acquisition of Dynamic Volumetric Phenomena: In Chapter 6, we fo-

cused on the recovery of time-varying participating media, such as smoke, clouds, and
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mixing fluids. For these natural phenomena, change in appearance over time is mainly

caused by a time-varying volume density. We propose a method for recovering the volume

densities using structured light. Whereas conventional structured light methods reconstruct

3D shapes based on triangulation (and thus are only applicable for opaque surfaces), our

method projects patterns into the volume of a participating medium to produce line-integral

measurements of the volume density. These integral measurements enable the use of com-

pressive sensing to recover the volume density from only a few measurements — this makes

the acquisition more efficient in terms of both acquisition time and illumination power.

7.2 Future Research

If we recall the history of appearance modeling in computer graphics and computer vision

(Section 1.2 on page 4), we can see that there has been tremendous progress over the last

twenty years. Many complex, high-dimensional appearance phenomena can be acquired to

further facilitate photo-realistic rendering. Computer graphics has achieved such a high

degree of realism that we began to see more and more augmented-reality applications in

our daily life such as remote conferencing, flight simulators, and movies with a mix of real

actors and CG. Researchers in computer vision continue to widen and deepen the use of

appearance models for estimating scene information.

Each advance brings a new opportunity for the study of appearance of natural phenom-

ena. Below, I summarize several important future directions.

Exploring Other Dimensions in Appearance Modeling: In this thesis, we have

focused on the time-varying aspect of visual appearance. In addition to the dynamic natural

phenomena studied in the thesis, there are many other natural phenomena that exhibit

interesting time-varying visual appearance but have not yet been thoroughly investigated.

For example, surface geometry might change over time for phenomena such as melting,

roughening, or shrinking. Atmospheric turbulence due to time-varying refractive index will

often cause artifacts in photographs and videos, especially for telescopy and astronomy.

These effects are often very difficult to simulate or compensate with all the level of details,

but are feasible to study in the data-driven manner.
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Another important dimension for appearance modeling of natural phenomena is wave-

length. Many natural phenomena exhibit strong, interesting multi-spectral appearance

properties, such as flowers, plants, food, and skin. With multi-spectral material properties,

one can simulate the appearance of these phenomena under various types of lighting condi-

tions, which is useful not only for photo-realistic rendering but also for material recognition

such as automatic inspection and medical imaging. So far, the acquisition of multi-spectral

BRDF is still expensive in terms of acquisition time and spectral resolution. Moreover,

there are few studies considering temporal variation in the multi-spectral appearance of

natural phenomena. These might be promising research topics for further exploration.

Statistical Approach for Appearance Modeling: As discussed in Chapter 2, appear-

ance models are usually high dimensional, such as the BRDF (4D) and the general light

transport matrix (8D). Both acquisition and rendering of these high-dimensional functions

are difficult.

On the other hand, the variations of the BRDFs of many real world materials are not

so versatile to our human vision system — they mainly vary in the size of the specular

lobes or whether the reflection is isotropic or anisotropic. The human visual system does a

remarkable job distinguishing between the BRDFs of many real world materials, even from a

single image [Adelson, 2001]. This suggests that the appearance of many natural phenomena

might be embedded in some low-dimensional manifold. Moreover, there might exist some

strong priors for material properties, just like the priors for natural images [Torralba and

Oliva, 2003].

Therefore, one future direction for appearance modeling is to explore the statistical

properties for the appearance of natural phenomena. We need to understand what is the

space of real-world materials, and we need to summarize the priors. There have been

some early studies where researchers proposed linear models such as PCA [Matusik et al.,

2003], a matrix factorization model [Lawrence et al., 2006], and nonlinear models such

as LLE [Matusik et al., 2003] to represent BRDFs. Their conclusions are encouraging.

For example, in [Matusik et al., 2003] it was shown that many isotropic BRDFs can be

represented using about 45 bases. Nonlinear statistical analysis on more general material
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properties would be of great interest to a large audience — the insights of these studies

would be valuable for real-time rendering, efficient acquisition, and material detection and

recognition.

Study of Appearance in the Outdoors: Most current research on appearance mod-

eling measures small samples in a laboratory environment under controlled lighting and

imaging conditions. Although this simplifies data acquisition and processing, it limits the

subjects of research and restricts the acquisition of many natural phenomena. Future study

of appearance should focus on extending current acquisition and modeling techniques to the

real, unconstrained environment. There are several possible research topics we can envision

along this line:

• Portable acquisition devices which can quickly measure the material properties of

samples outdoors in the field. Such devices are desirable especially if they can be

equipped in personal digital devices (e.g., cellular phones). With such devices, users

can easily capture interesting appearance phenomena and transfer to the computer for

design and rendering. We can also combine it with other data, such as 3D shape and

GPS coordinates, for recognizing the sample and investigating its statistical properties.

Structured light can be equipped in cellular phones or consumer digital cameras to

assist the acquisition.

• Simultaneous recovery of shape and appearance for objects in the real world. Existing

methods for appearance acquisition often are limited to small, flat samples, which sep-

arates the task for the recovery of shape and appearance for simplification. However,

this approach is not always possible for many real world objects, such as large scale

objects (e.g., buildings), irreplaceable objects (e.g., oil paintings), and inaccessible ob-

jects (e.g., planetary exploration). Often, we need to recover both the shape and the

appearance for these objects simultaneously under uncontrolled lighting conditions.

It might be necessary to incorporate priors of reflectance and natural lighting to assist

in this challenging task. There has been some early work using priors of light sources

for single image based color constancy [Finlayson et al., 2001]. Lalonde et al. [2009]

have collected a database of natural lighting using webcams, which could be used to
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explore the priors of natural lighting.

• Learning high-dimensional appearance phenomena (e.g., BRDF) from Internet image

collections. Nowadays, enormous numbers of photographs of the real world have been

taken by users and made available on the web. This new data source contains rich

information about our world, not only shape but also appearance. Similar to the work

done by Snavely et al. [2006] which extracts shape information from photographs for

browsing photos, one can imagine recovering material properties from images taken

under various natural lighting and view conditions without calibration. As a further

step in image understanding, extracted material information could be used for vari-

ous applications, such as browsing, recognition and retrieval, and synthesis of novel

appearance.

Appearance Modeling for Printing and Display: As mentioned at the beginning of

this thesis, appearance modeling serves as the bridge between the physical world and the

computer world. Over the last decade, we have seen tremendous progress in measuring data

from the physical world (e.g., geometry, reflectance, and illumination) and in reusing the

data for photo-realistic rendering. Today with various design and analysis tools, the next

logical step is to go in the opposite direction. This includes manufacturing physical objects

that have the desired appearance designed by artists in computers, as well as developing

novel display devices to demonstrate complex appearance phenomena (e.g., light field). A

few recent studies [Weyrich et al., 2009; Matusik et al., 2009] have started printing designed

BRDF on surfaces. Fabrication of more complex appearance phenomena, such as BTF and

subsurface scattering, are good topics to explore next.

These directions are not isolated. In fact, improvements in one direction will often

significantly facilitate other directions. With the ever constant evolution of more powerful

image sensors and computers, I believe that the study of appearance will help to seamlessly

intertwine real world and virtual world.
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Appendix A

Mirror Reflection and Refraction

When light strikes on the interface of two media, part of the light will be reflected and part

of the light will be refracted into the media. In the simplest case of a perfectly smooth

interface, both the reflection and refraction have singularity, i.e.., only one direction will

see the reflected light and refracted light. Because of this singularity, it sometimes causes

confusion in writing the formula of the BRDF and BTDF for this type of light-surface

interaction. Moreover, many real-world surfaces often have a mirror reflecting layer on the

top, such as finished wood or contaminated glass, and thus mirror reflection and refraction

are necessary to construct more complex BRDF/BTDF models.

In this appendix, we summarize the physical principles and quantities involved in mod-

eling mirror reflection and refraction. We derive their BRDF and BTDF and show how they

both satisfy the two fundamental constraints — energy conservation and the generalized

Helmholtz reciprocity. This appendix thus serves as background for the topics discussed in

Chapter 4 and Chapter 5.

A.1 Snell’s Law and Magnification Ratio

Let us first focus on the relationship of the incident angle and the outgoing angle for mirror

reflection and refraction. As shown in Figure A.1, the polar angle θi of the incident light Li

and the polar angle θr of the mirror reflected light Lr have the following simple relationship:

θr = θi, and φr = φi ± π. (A.1)
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Figure A.1: Coordinates for mirror reflection and refraction.

For refraction, the relationship between θi and θt is governed by Snell’s law (also known

as the law of refraction):

n1 sin θi = n2 sin θt, (A.2)

where n1 and n2 are the refraction indices of the two media. For the azimuth angles, we

have:

φt = φi ± π. (A.3)

As shown in Figure A.2, the incident beam will become “wider” after it enters a more

dense media (e.g., from air into glass or water). Let Ai denote the cross section of the

incident beam, At denote the cross section of the refracted beam, and A denote the area on

the interface, we have:
Ai

At
=

A · cos θi

A · cos θt
=

cos θi

cos θt
. (A.4)

This ratio often is called “magnification factor” in optics.

Based on this equation, we can derive an important relationship between the solid angle

of the incident beam, dωi, and the solid angle of the refracted beam, dωt. Based on the
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Figure A.2: Magnification in refraction.

definition of solid angle, we have

dω = sin θ · dθdφ. (A.5)

From Snell’s law, since φt = φi ± π, we have dφt = dφi. Also, by taking the differential on

Snell’s law equation, we have

n1 · cos θi · dθi = n2 · cos θt · dθt. (A.6)

Based on these two equations, we have

dωi

dωt
=

sin θi · dθi · dφi

sin θt · dθt · dφt
=

sin θi · dθi

sin θt · dθt

=
sin θi · n2 cos θt

sin θt · n1 cos θi
=

n2 · n2 cos θt

n1 · n1 cos θi
=

n2
2 cos θt

n2
1 cos θi

.

(A.7)

This relationship between the two solid angles will be useful for the derivation of the BRDF

and BTDF for mirror reflection and refraction, as shown below.

A.2 Fresnel Equations

Next, we focus on the relationship between the “energy” of the incident light and the

outgoing light for mirror reflection and refraction. This relationship is described by Fresnel



APPENDIX A. MIRROR REFLECTION AND REFRACTION 151

equations, which are derived based on Maxwell equations [Ishimaru, 1978]:

r⊥ =
E0t,⊥

E0i
=

cos θi −
√

n2 − sin2 θi

cos θ +
√

n2 − sin2 θ
= −

sin(θi − θt)

sin(θi + θt)
, (A.8)

r‖ =
E0r,‖

E0i
=

n2 cos θi −
√

n2 − sin2 θi

n2 cos θ +
√

n2 − sin2 θ
=

tan(θi − θt)

tan(θi + θt)
, (A.9)

t⊥ =
E0t,⊥

E0i
=

2cos θi

cos θi +
√

n2 − sin2 θi

=
2 sin θt cos θi

sin(θi + θt)
, (A.10)

t‖ =
E0t,‖

E0i
=

2n cos θi

n2 cos θi +
√

n2 − sin2 θi

=
2 sin θt cos θi

sin(θi + θt) cos(θi − θt)
, (A.11)

where n = n2/n1, and E0i, E0r, and E0t are the field complex amplitudes of the incident, re-

flected, and transmitted electromagnetic waves. These equations give the ratios between the

field complex amplitudes between the incident, reflected, and transmitted electromagnetic

waves, for parallel polarized (‖) and perpendicular polarized light (⊥), respectively. These

ratios are often referred to as “reflection coefficients” (i.e., r⊥ and r‖) and “transmission

coefficients” (i.e., t⊥ and t‖).

Based on Maxwell’s equations, the flux density of light can be computed from electro-

magnetic waves’ field complex amplitude as follows:

I =
(

n
ǫ0c0

2

)

|E0|
2 [W · m−2] (A.12)

where n is refraction index, c0 is the speed of light, ǫ0 is the permittivity of the matter.

Based on this equation, we can compute the ratio between the power of the reflected light

dΦr and the power of the incident light dΦi, i.e., the reflectance in terms of power (also

called “reflectivity”), is

Rp =
dΦr

dΦi
=

Ir · Ai

Ii · Ai
=

Ir

Ii
= |r|2. (A.13)

For unpolarized light,

Rp =
1

2
(r2

⊥ + r2
‖). (A.14)

The transmittance in terms of power (also called “transmissivity”), Tp, which is the ratio

between the power of the refracted light dΦt and the power of the incident light dΦi, can

be derived based on Equation (A.4):

Tp =
dΦt

dΦi
=

It · At

Ii · Ai
= |t|2 ·

n2
2 cos θt

n2
1 cos θi

. (A.15)
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For unpolarized light,

Tp =
1

2
(t2⊥ + t2‖)

n2
2 cos θt

n2
1 cos θi

. (A.16)

By substituting the above equations into the equation below, one can show that the energy

is conserved as expected,

Rp + Tp = 1. (A.17)

In computer graphics and computer vision, we often care about the relationship be-

tween the radiance of the incident light and the reflected/refracted light. To derive this

relationship, we go back to the definition of radiance, and we have:

dΦi = Li · dA · cos θi · dωi,

dΦr = Lr · dA cos θr · dωr = Rp · dΦi,

dΦt = Lt · dA cos θt · dωt = Tp · dΦi.

We have derived the relationship between dωi, dωr and dωt that dωi = dωr and dωi/dωt =

n2
2 cos θt/(n

2
1 cos θi). Substitute them into the above equation, we have:

Lr = Rp · Li, (A.18)

and

Lt =
cos θi

cos θt
·
dωi

dωt
· Tp · Li =

n2
2

n2
1

Tp · Li. (A.19)

Therefore, the reflectance in terms of radiance is:

R = Rp, (A.20)

and the transmittance in terms of radiance is:

T =
n2

2

n2
1

Tp. (A.21)

These quantities for reflection and refraction are summarized in Table A.2.

A.3 BRDF and BTDF of Mirror Reflection and Refraction

BRDF for Mirror Reflection: From [Nicodemus et al., 1977] Appendix C, page 44,

a perfectly specular (mirror-like) or regular reflecting element dA is one for which each
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Table A.1: Summary of physical quantities for refraction and reflection

s − polarized(⊥) p − polarized(‖) unpolarized

Reflection

coefficient

rs = n1 cos θi−n2 cos θt

n1 cos θi+n2 cos θt
rp = n1 cos θt−n2 cos θi

n1 cos θt+n2 cos θi
r2 = 1

2 (r2
s + r2

p)

Transmission

coefficient

ts = 2n1 cos θi

n1 cos θi+n2 cos θt
tp = 2n1 cos θi

n1 cos θt+n2 cos θi
t2 = 1

2(t2s + t2p)

Reflectance

(Reflectivity)

Rp = |rs|
2 Rp = |rp|

2 Rp = |r|2

Transmittance

(Transmissivity)

Tp =
n2

2 cos θt

n2
1 cos θi

|ts|
2 Tp =

n2
2 cos θt

n2
1 cos θi

|tp|
2 Tp =

n2
2 cos θt

n2
1 cos θi

|t|2

Reflectance

(Radiance)

R = |rs|
2 R = |rp|

2 R = |r|2

Transmittance

(Radiance)

T =
n3

2 cos θt

n3
1 cos θi

|ts|
2 T =

n3
2 cos θt

n3
1 cos θi

|tp|
2 T =

n3
2 cos θt

n3
1 cos θi

|t|2
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ray of incident flux produces only a corresponding reflected ray in the specular direction

(θr = θi;φr = φi ± π) [rad], so that (assume lossless reflector)

Lr(θr, φr) = Li(θr, φr ± π) [W · m−2 · sr−1]. (A.22)

From the definition of BRDF, we know it needs to satisfy the following equation

Lr(θr, φr) =

∫

ω
Li(θi, φi) · fr(θi, φi; θr, φr) · cos θi · dωi [W · m−2 · sr−1]. (A.23)

By using the Dirac delta-function δ(·), the BRDF for an ideal (lossless) specular reflector

can be written as:

fr(θi, φi; θr, φr) = 2 · δ(sin2 θr − sin2 θi) · δ(φr − φi ± π) [sr−1]. (A.24)

We note that Helmholtz reciprocity holds for this BRDF, since by swapping θi and θr the

formula remains the same.

BTDF for Refraction: We now investigate the BTDF for refraction. Similar to the

mirror reflection, for refraction, each ray of incident flux produces only a corresponding

refracted ray in the refracted direction, so we have

Lt(θt, φt) = T12 · Li(sin
−1 (n2 sin θt/n1) , φt ± π) [W · m−2 · sr−1], (A.25)

where T12 = n2
2Tp/n

2
1, and Tp is the transmittance defined as 1 − Rp. By using the Dirac

delta-function, the BTDF for refraction can be written as:

ft(θi, φi; θt, φt) = 2 · T12 · δ(n
2
2 sin2 θt/n

2
1 − sin2 θi) · δ(φt − φi ± π) [sr−1]. (A.26)

To show that this function satisfy the generalized Helmholtz reciprocity, we need to

prove
ft(θi, φi; θt, φt)

n2
2

=
ft(θt, φt; θi, φi)

n2
1

(A.27)

We note that the reflectance Rp and thus the transmittance Tp = 1−Rp are the same in both

ft(θi, φi; θt, φt) and ft(θt, φt; θi, φi) so that Tp can be canceled from both sides. Moreover,

for the Dirac delta-function, δ(x), we have

∫

δ(ax)dx = (1/a) ·

∫

δ(ax)d(ax) = 1/a, (A.28)
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and thus we have

δ(ax) = δ(x)/a. (A.29)

Therefore, we have

δ(n2
2 sin2 θt/n

2
1 − sin2 θi) =

n2
1

n2
2

δ(sin2 θt − n2
1 sin2 θi/n

2
2), (A.30)

which means

ft(θi, φi; θt, φt)

ft(θi, φi; θt, φt)
=

T12 · δ(n
2
2 sin2 θt/n

2
1 − sin2 θi)

T21 · δ(sin
2 θt − n2

1 sin2 θi/n2
2)

=
n2

2

n2
1

·
n2

2

n2
1

·
n2

1

n2
2

=
n2

2

n2
1

. (A.31)

Therefore, we have
ft(θi, φi; θt, φt)

n2
2

=
ft(θi, φi; θt, φt)

n2
1

. (A.32)

This proves the generalized Helmholtz reciprocity holds for the BTDF of refraction.

A.4 BRDF for a Laminated Surface

In this section, we look at one special type of surfaces that are commonly present in our

daily lives — a surface composed with an opaque surface underneath and a transparent layer

on the top. Examples include photo frames, laminated floors, and various types of reflective

plastics. One interesting effect of these surfaces is the Fresnel effect — when viewing at a

glancing angle, we will see more of the mirror reflection and less of the underlying color.

Ashikhmin and Shirley [2000] studied this phenomena for the reflectance of a diffuse surface

covered with a glossy specular layer on the top. Here we focus on the surface composed

with a general opaque surface (both diffuse or specular) underneath and a transparent layer

on the top. Our goal is to show that the BRDF for the composed surface will also satisfy

the Helmholtz reciprocity constraint.

Figure A.3 shows a diagram of an opaque surface covered with a transparent layer on

the top. We assume the BRDF for the opaque surface is f0(·), which satisfies the Helmholtz

reciprocity. With a transparent layer on the top, there will be two components in the

reflected light — the perfect reflection from the top layer, which we have shown satisfies the

Helmholtz reciprocity earlier, and the light that transmits into the top layer and reflects

from the bottom layer (i.e., the opaque surface) and then refracts to the outside. Below, we
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n1

n2

Opaque Surface

Li
Lr

θi θr

θit θrt

dωi dωr

Lit
Lrt

Figure A.3: Surfaces composed of a transparent top layer and an opaque surface at the

bottom layer.

show that the second component results in a BRDF that satisfies the generalized Helmholtz

reciprocity.

Let n1 and n2 be the refraction indices of air and the top layer. For a beam of incident

light Li(θi, φi), we have

Lit(θit, φit) =
n2

2

n2
1

· Tp(θi) · Li(θi, φi). (A.33)

and

Lrt(θrt, φrt) =
n2

2

n2
1

· Tp(θr) · Lr(θr, φr). (A.34)

Therefore,

dLr(θr, φr) =
n2

1

n2
2

· Tp(θr) · dLrt(θrt, φrt). (A.35)

As a result, the reflected radiance of the opaque surface in the direction of (θrt, φrt) is:

dLrt(θrt, φrt) = dEit · f0(θit, φit; θrt, φrt) (A.36)

This irradiance, dEit, by definition, also equals to

dEit = Lit(θit, φit) · cos θit · dωit (A.37)
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From the definition of BRDF, we have

f(θi, φi; θr, φr) =
dLr(θr, φr)

Li(θi, φi) cos θidωi

=

n2
1

n2
2
· Tp(θr) · dLrt(θrt, φrt)

Li(θi, φi) cos θidωi

=

n2
1

n2
2
· Tp(θr) · dEit · f0(θit, φit; θrt, φrt)

Li(θi, φi) cos θidωi

=

n2
1

n2
2
· Tp(θr) · Lit(θit, φit) · cos θit · dωit · f0(θit, φit; θrt, φrt)

Li(θi, φi) cos θidωi

=

n2
1

n2
2
· Tp(θr) ·

n2
2

n2
1
· Tp(θi) · Li(θi, φi) · cos θit · dωit · f0(θit, φit; θrt, φrt)

Li(θi, φi) cos θidωi

=
cos θit · dωit

cos θi · dωi
· Tp(θr) · Tp(θi) · f0(θit, φit; θrt, φrt)

=
cos θit · n

2
1 cos θi

cos θi · n
2
2 cos θit

· Tp(θr) · Tp(θi) · f0(θit, φit; θrt, φrt)

=
n2

1

n2
2

· Tp(θr) · Tp(θi) · f0(θit, φit; θrt, φrt).

The above derivation uses the relationship we derived earlier in Equation (A.7)

dωit

dωi
=

n2
1 cos θi

n2
2 cos θit

.

Since f0(·) satisfies the Helmholtz reciprocity, we have proved that f(·) also satisfies the

reciprocity,i.e.,

f(θi, φi; θr, φr) = f(θr, φr; θi, φi). (A.38)
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Appendix B

Reflectance Models for

Contaminated Transparent Objects

In this appendix, we present the details for the reflectance models and the equations for

measurement for contaminated transparent objects which we derived earlier in Chapter 4.

We also prove that the derived BRDF and BTDF models for contaminated transparent

objects also satisfy the generalized Helmholtz reciprocity.

B.1 BRDF and BTDF of Contaminated Glass

The BRDF and BTDF models derived in Chapter 4 for contaminated transparent surfaces

are briefly summarized as follows. As shown in Section 4.2 on page 56, there are four

components for reflection (i.e., dL
(k)
r , k = 1, 2, 3, 4) and two components for refraction (i.e.,

dL
(k)
t , k = 1, 2). The formulas for the BRDF and BTDF models are elaborated below.
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For reflection,

fr,s(ωi, ωr) = R12
p (θi) · δ(sin

2 θi − sin2 θr)δ(φi − φr ± π),

+ e
−τ( 1

cos θit
+ 1

cos θrt
)
· T 12

p (θi)T
12
p (θr)R

23
p (θit)

· δ(sin2 θi − sin2 θr)δ(φi − φr ± π),

fr,d(ωi, ωr) =
n2

1

n2
2

· T 12
p (θi)T

21
p (θr) ·

1 − e
−τ( 1

cos θit
+ 1

cos θrt
)

cos θit + cos θrt
· W0 · p(π − θit − θrt)

+
n2

1

n2
2

· T 12
p (θi)T

21
p (θr) ·

e
− τ

cos θit − e
− τ

cos θrt

cos θit − cos θrt

·
(

R23
p (θit) · e

− τ
cos θit + R23

p (θrt) · e
− τ

cos θrt

)

· W0 · p(θit − θrt).

For refraction,

ft,s(ωi, ωt) =
n2

3

n2
1

T 12
p (θi)T

23
p (θit) · e

−τ/ cos θit · δ(sin2 θi −
n2

3

n2
1

sin2 θt)δ(φi − φt ± π),

ft,d(ωi, ωt) =
n2

3

n2
2

T 12
p (θi)T

23
p (θt) ·

e−τ/ cos θit − e−τ/ cos θtt

cos θit − cos θtt
· W0 · p(θit − θtt).

From the above equations, it is easy to see that fr,s(ωi, ωr) and fr,d(ωi, ωr) satisfy the

Helmholtz reciprocity, because if we swap θi and θr, θit and θrt are also swapped and the

equations remain the same. For the two refraction components, we need to show they satisfy

the generalized Helmholtz reciprocity, i.e.,

ft(ωi, ωt)

n2
3

=
ft(ωt, ωi)

n2
1

.

This property holds because for ft,s(ωi, ωt), we have

ft,s(ωi, ωt)

n2
3

=
1

n2
1

T 12
p (θi)T

23
p (θit) · e

−τ/ cos θit · δ(sin2 θi −
n2

3

n2
1

sin2 θt)δ(φi − φt ± π)

=
1

n2
1

T 12
p (θi)T

23
p (θit) · e

−τ/ cos θit ·
n2

1

n2
3

δ(
n2

1

n2
3

sin2 θi − sin2 θt)δ(φi − φt ± π)

=
1

n2
3

T 12
p (θi)T

23
p (θit) · e

−τ/ cos θit · δ(sin2 θt −
n2

1

n2
3

sin2 θi)δ(φt − φi ± π)

=
ft,s(ωt, ωi)

n2
1

,
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and

ft,d(ωi, ωt)

n2
3

=
1

n2
2

T 12
p (θi)T

23
p (θt) ·

e−τ/ cos θit − e−τ/ cos θtt

cos θit − cos θtt
· W0 · p(θit − θtt)

=
1

n2
2

T 12
p (θi)T

23
p (θt) ·

e−τ/ cos θtt − e−τ/ cos θit

cos θtt − cos θit
· W0 · p(θtt − θit)

=
ft,d(ωt, ωi)

n2
1

.

B.2 Derivation of Equation (4.10) in Section 4.4

In this section we show the derivation of Equation (4.10) for the measurement of scattering

in Section 4.4 on page 69. As shown in Figure 4.10(b), for a point (x, y) on the Lambertian

board, its outgoing radiance is proportional to the irradiance

Lc(x, y) = ρ · E(x, y),

where ρ is the albedo of the board, and the irradiance E(x, y) can be computed as

E(x, y) = L
(2)
t (ωt) cos θdωt,

where L
(2)
t (ωt) is the outgoing radiance of the contaminant due to scattering of the incident

beam, and the solid angle dωt is given by

dωt =
dAp cos θ

(D cos θ)2
,

where dAp is the area of the contaminant layer illuminated by the beam and D is the distance

from the slab to the board. Based on these equations and Equation (4.6) in Section 4.2 for

L
(2)
t (ωt), we can derive that (note that the incident direction ωi is perpendicular to the slab

and thus cos θi = cos θ′i = 1):

I(x, y) ∝ Lc(x, y) ∝ p(θ; g) ·
e−τ − e−τ/ cos θ

1 − cos θ
· cos4 θ,

where we approximate the angle of the refracted ray inside the contaminant layer as θ as

well. From this equation, we fit the phase function p(θ; g) with a nonlinear optimization

algorithm to estimate g.
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Appendix C

An Introduction to Compressive

Sensing

In this appendix, we give a brief introduction on compressive sensing for recovering sparse

signals, which has been used in Chapter 6. Compressive sensing [Candes and Romberg,

2007; Donoho, 2006] is a nascent field of applied mathematics with a variety of successful

applications including imaging [Takhar et al., 2006; Willett et al., 2007], medical visualiza-

tion [Lustig et al., 2007], and face recognition Wright et al. [2009]. It offers a theoretical

framework to reconstruct “sparse” signals from far fewer samples than required by the

conventional Shannon sampling theorem. Our work builds on the basic formulation of com-

pressive sensing, which we augment with auxiliary terms specific to the reconstruction of

volume density.

In its simplest form, compressive sensing seeks a solution of the underdetermined linear

system

Ax = b, (C.1)

where x ∈ Rn is a sparse signal, A is an m×n matrix called the “measurement ensemble”,

and b is the vector of m measurements, with m < n.

Compressive sensing theory asserts that one can recover the signal from far fewer mea-

surements than the dimension of the signal, if the signal is sparse—it is represented with

few non-zero coefficients in a suitable basis—and the measurements are uncorrelated, in the
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sense that each measurement is an inner product of the signal with a test function that

has a necessarily dense representation in the chosen basis. Equivalently, the measurement

ensemble A needs to satisfy the restrictive isometry condition (RIC). Strict definitions of

sparsity and RIC can be found in [Candes et al., 2006]. Several ensembles are known to

meet the RIC:

1. Gaussian Random Variables where each element of the matrix A is independently

drawn from a normal distribution and each column is normalized to unit length.

2. Bernoulli Random Variables where each element is independently drawn from a Bernoulli

distribution of +1 or -1 with the probability of 0.5.

3. Partial Fourier Ensembles where the ensemble consists of randomly selected Fourier

basis functions.

Given a measurement ensemble matrix A, compressive sampling theory predicts that x

is the minimizer of

min‖x‖1, subject to Ax = b. (C.2)

The above reconstruction strategy has been shown to work well for sparse signal estima-

tion, even from a noisy measurement [Candes et al., 2006]. In Chapter 6 for recovering the

volume densities of dynamic participating media, we augmented the basic problem above

with auxiliary terms that enforce the nonnegative constraint for the signal, and that exploit

the sparsity not only of the signal value but also its gradient. Indeed, our evaluation (Sec-

tion 6.5, Section 6.6) shows that using the sparsity of the gradient is important for accurate

and efficient reconstruction.
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Appendix D

Fitting Measured TSV-BRDF

Data to Parametric Model

In this appendix, we list the average Normalized Root Measure Square Error (NRMSE) for

fitting the acquired TSV-BRDF data to the parametric reflection model. More details can

be found in Section 3.3 on page 30.

We show the results for the 28 samples in our database. In each plot, the x-axis is the

index of time frames, and the y-axis is the averaged NRMSE computed across all the spatial

locations on each sample. The standard deviation is also included. These plots shows that

most samples in our database have the average NRMSE less than 7% across all time frames,

which shows the accuracy of the BRDF fitting.
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