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Abstract—Fingerprint analysis is typically based on the location and pattern of detected singular points in the images. These singular

points (cores and deltas) not only represent the characteristics of local ridge patterns but also determine the topological structure (i.e.,

fingerprint type) and largely influence the orientation field. In this paper, we propose a novel algorithm for singular points detection.

After an initial detection using the conventional Poincaré Index method, a so-called DORIC feature is used to remove spurious singular

points. Then, the optimal combination of singular points is selected to minimize the difference between the original orientation field and

the model-based orientation field reconstructed using the singular points. A core-delta relation is used as a global constraint for the

final selection of singular points. Experimental results show that our algorithm is accurate and robust, giving better results than

competing approaches. The proposed detection algorithm can also be used for more general 2D oriented patterns, such as fluid flow

motion, and so forth.

Index Terms—Singular points, topological structure, Poincaré Index, orientation field.
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1 INTRODUCTION

A fingerprint is a 2D oriented ridge-valley pattern
captured from a finger by inked press, capacitive

sensor, optical sensor, etc. Within each fingerprint, there are
usually two kinds of singular points: cores and deltas, where
the ridge orientation patterns discontinue or change
abruptly [1]. Fig. 1 lists six typical types of fingerprints
with singular points marked. As an important topological
feature for fingerprints, singular points can be used for
fingerprint indexing (i.e., classification for fingerprint types)
[2], [3], as well as for fingerprint alignment and orientation
field modeling [4], [5], and so forth. These features also
occur in other types of 2D oriented textures, such as fluid
flow, optical flow, etc.

Many previous works have addressed singular point
detection and analysis in fingerprint images. They can be
roughly classified into two categories. The first approach is
mainly based on using the Poincaré Index to consider the
discontinuous orientation distribution around singular
points [1], [2], [6], [7], [8]. This kind of algorithm usually
calculates the sum of the orientation changes along a close
circle around the point to judge whether it is a singular
point. The second type of approach uses probability
analysis, ridge analysis, shape analysis, or template match-
ing [9], [10], [11], [12], [13], [14], [15], [16]. Compared with
these latter techniques, Poincaré Index-based detection
methods are generally more robust to image rotation and
relatively simple to compute, so they are more widely used
in real applications.

Poincaré Index-based algorithms usually result in many
spurious detections (especially for low-quality fingerprint
images), even after postprocessing. The spurious detected
points can heavily degrade the performance of these
algorithms in many applications. The spurious detections
result because 1) the Poincaré Index feature alone is not
enough for accurate singular point detection and 2) most
postprocessing approaches utilize only local characteristic
of singular points, which is not enough to discriminate true
singular points from spurious detections caused by creases,
scars, smudges, damped prints, etc. In the orientation field,
some spurious detections actually have nearly the same
local patterns as true singular points. To accurately
distinguish the genuine singular points, global discrimina-
tive information should be incorporated into the detection.
One interesting work proposed by Perona [17] is orientation
diffusion, which implicitly use the global constraint of the
oriented texture during the dynamic diffusion process.

In this paper, we will address singular point detection
based on a novel so-called Differences of the ORIentation
values along a Circle (DORIC) feature and global constraints.
Compared with previous studies, the contributions of this
paper lie in the following aspects: 1) We propose using the
DORIC feature for singular point verification, which can
provide more discriminative information to remove spurious
detections and 2) based on an analysis of core-delta relation-
ships, we propose to select the optimal combination of
singular points by global constraints. The optimal singular
points are chosen to minimize the difference between the
detected orientation field and model-based orientation field
reconstructed using the singular points. Experimental results
show that using DORIC and global information, our algo-
rithm is accurate and robust for a wide variety of fingerprint
types. Compared with previous research, better detection
results can be obtained with our approach.

The rest of this paper is organized as follows: Section 2
analyzes the topological structure of fingerprints. In
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Section 3, the DORIC feature is proposed to remove

spurious SPs. Section 4 discusses how to select the optimal

combination of cores and deltas using global information.

Experimental results are presented in Section 5. We finish

with conclusions and a discussion of the applications of our

approach in Section 6.

2 TOPOLOGICAL ANALYSIS FOR FINGERPRINT

STRUCTURES

2.1 Mathematical Background

Definition. Let V ðx; yÞ ¼ pðx; yÞ þ i � qðx; yÞ be a continuous

2D vector field. Then, the Poincaré Index of V ðx; yÞ along an

arbitrary simple closed path � is defined as

Ið�Þ ¼ 1

2�

Z
ðx;yÞ2�

d�ðx; yÞ; ð1Þ

where �ðx; yÞ ¼ argV ðx; yÞ is the angle at point ðx; yÞ and

� 2 ½0; 2�Þ. The integration is taken counterclockwise along �.

The Poincaré Index is always an integer. By computing I

along a simple closed circle around a point P , one can find

whether P is a singular point ðI 6¼ 0Þ or a common point

ðI ¼ 0Þ. Fig. 2 illustrates the vector field and Poincaré Index

for two typical low order singular points (circle point and

saddle point) as well as for a region with no singular points.

Refer to [18], [19], [20], [21] for more details.
Suppose that a region � has an exterior boundary, �E ,

and an interior boundary, �I , as shown in Fig. 3. The

singular points inside � are denoted by the circles,

f�kjk ¼ 1; 2; 3; . . .g. C is a simple closed path inside �.

Two important properties of the Poincaré Index can be

formulated as follows and their proof can be derived from

Complex Function Theory [22].
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Fig. 1. Various types of fingerprints with cores (marked with circles) and deltas (marked with triangles). (a) Plain arch. (b) Tented arch. (c) Left loop.

(d) Right loop. (e) Twin loop. (f) Whorl.

Fig. 2. Three typical patterns. (a) No singularity, I ¼ 0. (b) Circle, I ¼ 1.

(c) Saddle, I ¼ �1.

Fig. 3. Region � with its boundary @� ¼ �E [ �I . f�i; i ¼ 1; 2; 3g are the

circles around the singular points inside �. C is a simple closed path in �.



Property 1. The Poincaré Index along the boundary of a given
region is equal to the sum of the Poincaré Indices of the
singular points inside this region, i.e.,X

k

Ið�kÞ ¼ Ið�EÞ � Ið�IÞ: ð2Þ

Property 2. If two simple closed paths are homotopic, and there
are no other singular points between them, their Poincaré
Indices are the same. For example, IðCÞ ¼ Ið�EÞ, in Fig. 3.

2.2 Analysis of Fingerprint Images

For oriented texture images, such as fingerprints and fluid
flow, it is natural to establish their connection with 2D
topology theory. By computing the orientation field,
Oðm;nÞð2 ½0; �ÞÞ, which represents the ridge orientation
for each pixel, ðm;nÞ, we can build a vector field V ¼
cos 2Oþ i � sin 2O [5], [23]. Then, we can apply the above
definitions and properties on these images. The singular
points in fingerprints are found to be consistent with the
singular points defined in topology. In Fig. 4, we list two
typical singular points for fingerprints, their Poincaré
Indices, and their local patterns in the orientation field O
and the vector field V .

An interesting conclusion for fingerprints can be
deduced based on Property 1. Since fingerprints usually
do not have interior boundary �i and only have isolated
singular points (cores and deltas) with known Poincaré
index (þ1 for core, �1 for delta), (2) can be written as

Nc �Nd ¼ Ið�EÞ; ð3Þ

where Nc is the number of the cores, Nd is the number of the
deltas, and �E is the exterior boundary of the fingerprint.

Previous works have pointed out that cores and deltas
should appear in pairs [2], [4], [5]. Two views of a real thumb
are shown as an example in Figs. 5a and 5b with the cores and
the deltas marked. As shown in Fig. 5, if fingerprints are
captured completely, it can be assumed that the orientation of
left, right, bottom, and top boundaries are nearly horizontal. For
the simple closed path �E consisting of this kind of
boundaries, Ið�EÞ ¼ 0, and then Nc ¼ Nd.

As for Property 2, we know that the Poincaré Index can
be computed along any simple closed path as long as it is
homotopic with the closed circle around the same points.
This allows us to adaptively choose the integral path for the

boundary, for example, to choose the path where the

orientation confidence is much higher.

3 USING DORIC FEATURE TO REMOVE SPURIOUS

SINGULAR POINTS

3.1 DORIC Feature

Many previous researchers have shown that Poincaré
Index-based methods can usually detect nearly all true
singular points when the Index is computed along small
region boundaries, but this also leads to many spurious
detections. If a larger region is chosen, true singular points
will be easy to miss [8]. In order to remove spurious
detections while preserving a good detection rate, we
propose a novel feature extended from the Poincaré Index,
which can provide more discriminating features and be
used to verify the trueness of each detection after using
Poincaré Index algorithm.

The Poincaré Index is defined as the sum of the

orientation differences along a closed circle L (in our

study, its radius is chosen as 5 pixels). For a given point

P , assume that the set of sampled points along L is

fT1; T2; T3; . . . ; TN�1g and oi is the orientation of point Ti.

Then, the Poincaré Index of P can be computed by [2], [4]

IP ¼
1

�

XN�1

i¼1

fðoiþ1 � oiÞ

¼ 1

�

XN�1

i¼1

fð�oiÞ;
ð4Þ

where oN ¼ o1, and function f is defined as

fðxÞ ¼
x; jxj � �

2 ;
�� x; x > �

2 ;
�þ x; x < � �

2 :

8<
: ð5Þ

The Poincaré Index is only the sum of �oi. It contains no
information about the structure of �oi, i ¼ 1; 2; 3; . . . ; N � 1,
and it cannot describe the singular point completely. So,
when there are creases, scars, smudges, or damped prints in
the fingerprint images, the Poincaré Index method will
easily result in many spurious singular points. Postproces-
sing steps are therefore usually necessary. In our study, we
use two simple heuristic rules during postprocessing: 1) If a
delta is too close to a core (the distance between them is
smaller than 8 pixels), remove both of them and 2) in a very
small region (a circular region with a radius of 8 pixels), if
there is more than one core (or delta), an average core (or
delta) can be computed instead. Suppose that there are
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Fig. 4. (a) Singular points in fingerprints with the Poincaré Indices,

(b) their local patterns in the orientation field O, and (c) the vector field V .

Fig. 5. (a) Left and (b) right views of a real thumb with singular points and

boundary marked. (c) The boundary of a complete fingerprint abstraction.



N cores (or deltas) in such a region, fðxi; yiÞ; i ¼ 1; 2; . . . ; Ng.
Then, the average core (or delta) ðx; yÞ is computed by

x ¼ 1

N

XN
i¼1

xi ð6Þ

and

y ¼ 1

N

XN
i¼1

yi: ð7Þ

However, even after this postprocessing step, many

spurious detections still remain. Fig. 6 shows two examples

from a poor-quality fingerprint, illustrating points that are

falsely detected as a core and a delta by using the Poincaré

Index method and this postprocessing.
In order to further remove the spurious points, we

propose to use a novel feature, which contains more

information about the singular point. The feature on point

P is a vector, which consists of the DORIC around P , i.e.,

DORICðP Þ ¼ ½�o1; �o2; . . . ; �oN�1�: ð8Þ

As DORIC contains all �oi, it can describe the singular

point more completely. The Poincaré Index can be seen as

the sum of DORIC features and DORIC features can be

regarded as an extended form of Poincaré Index. Fig. 7

shows six singular points detected by the Poincaré Index

method and their DORIC features are plotted as curves

(among them, Figs. 7a, 7b, 7c, and 7d are true and Figs. 7e

and 7f are spurious detections).
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Fig. 6. Two examples of spurious singular points detected using a

conventional Poincaré Index-based method and postprocessing steps,

in which the false core is marked with a circle and the false delta is

marked with a triangle.

Fig. 7. Singular points detected by using the Poincaré Index algorithm and their DORIC features (plotted as curves): (a), (b), (c), and (d) are true

while (e) and (f) are spurious.



Since the orientation field is defined in ½0; �Þ, there will
be one DORIC feature pulse for each singular point
(positive pulse for core, and negative pulse for delta) if
the orientation field is detected perfectly. See Figs. 7a and 7b
for examples. Although the noise around the true singular
points may change the curves a little, there exists a clearly
evident difference between true and spurious singular
points. These phenomena can be observed in Fig. 7.

After postprocessing steps, the detected singular points
are isolated, i.e., there is only one singular point for any
fairly large region. Thus, it is more appropriate to compute
the DORIC features along a large circle. Then, N can be a
large number, and consequently, the curves of DORIC
features will be more continuous, which makes the
following analysis much easier. In our study, the radius of
the circle is chosen as 10 pixels.

3.2 Removing Spurious Singular Points

To distinguish true singular points from spurious ones, a
two-step classifier is proposed as below.

For each point with nonzero Poincaré Index in the
candidate set S, we compute its DORIC feature. If there is
exactly one pulse (i.e., positive pulse for core and negative
pulse for delta) with the height nearly up to �, it is a valid
singular point and will be kept in the final set S of singular
points; otherwise, it will be removed from candidate set S
and placed into an auxiliary set S0 of candidates for further
processing. This process is outlined in Algorithm 1.

Algorithm 1 Pseudocode of the first step for removing

spurious SPs
1 for each detection point P in S do

2 DORICðP Þ ¼ ½�o1; �o2; . . . ; �oN�1�;
3 if 9!k 2 ½1; N � 1�, that j�okj > T , then

4 keep P in S;

5 end

6 else

7 remove P to S0

8 end

9 end

The auxiliary point set S0 can contain a mixture of true
singular point and spurious detections. We will design a
classifier based on training samples to distinguish between
the true points (e.g., Figs. 7c and 7d) and the spurious ones
(e.g., Figs. 7e and 7f).

Since it is time consuming to manually label true and
spurious singular point samples for the training of the
classifier, we will utilize sample learning methods suitable
for small-numbered samples. We have chosen to use a
Support Vector Machine (SVM) to design our classifier.
SVMs try to find an optimal separating hyperplane in the
feature space and minimize the classification error for the
training data using a nonlinear transform function [24].
SVM has been well studied in statistical learning theory
[24], [25], [26]. Suppose that the original data space is L and
the feature space is H (here, we use L as a hint for “low
dimensional,” and H for “high dimensional”). Let � be the
transforming function between the two spaces:

� : L 7! H: ð9Þ

Let N be the number of training samples. Denoting the
set of training data as fxi; yig, i ¼ 1; 2; . . . ; N , xi 2 L, and
yi 2 f�1;þ1g, the SVM calculates the sign of fðxÞ as the
decision result, where fðxÞ is calculated as

fðxÞ ¼
XN
i¼1

�iyiKðxi;xÞ þ b: ð10Þ

The nature of the decision surface is mainly defined by
the kernel function Kðxi;xÞ, which should satisfy Mercer’s
conditions. The commonly used kernels include polynomial
kernels Kðxi;xÞ ¼ ðxtixþ 1Þd, where d is a positive integer
to define the degree of a polynomial decision surface, and
Gaussian kernels Kðxi;xÞ ¼ e�gkxi�xk2

. The kernel function
Kðxi;xÞ can be easily computed by an inner product of the
nonlinear transform function [24].

In this problem, the missed detection rate (classifying
true singular points as spurious ones) should be very small.
The separating hyperplane is defined by �i ði ¼ 1; 2; . . . ; NÞ
and b. In our study, we select an optimal b0 to move the
separating plane to an appropriate position that will
misclassify less than 2 percent of true singular points as
spurious ones and, meanwhile, minimize the error of
classifying spurious singular points as true ones.

From the definition of DORIC features, we can see that
this vector is sensitive to image rotation. To overcome the
affect of image rotation, we augment our training set by
rotating each fingerprint sample image by 10 degree
increments. All of the samples are used for training the
SVM classifier to make it insensitive to image rotation.

Based on the SVM result, we can make the decision
whether a point P in S0 should be moved back to the final
candidate set S or not. After this two-step classification
process, a lot of the spurious singular points are removed.
For example, Figs. 7e and 7f can be successfully judged as
spurious singular points while the other four are kept as
true ones.

4 SINGULAR POINTS SELECTION WITH GLOBAL

INFORMATION

As we pointed out earlier, local features alone are not enough
to fully discriminate the true singular points from spurious
detections, which can actually have similar local character-
istics as the true ones. This motivates us to incorporate more
global discriminative information for detection.

4.1 Removing Invalid Combinations

The core-delta relation deduced in Section 2 is used as a
global constraint for selecting the optimal set of final
singular points. In real applications, many fingerprint
images captured by optical or capacitive sensors are not
complete. Often they will lose one or two deltas. In this case,
the number of cores is not necessarily equal to the number
of deltas. Nevertheless, (3) still presents us a global
topological constraint for singular points. Suppose the
effective region of the fingerprints is �. By computing
Ið@�Þ, we can know that only a few combinations of the
singular points are valid. In Table 1, we list most of the
possible combinations of singular points for fingerprints
with the Poincaré Index and the possible types (PA—plain
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arch, TA—tented arch, LL—left loop, RL—right loop,

TL—twin loop).

In practice, the orientation field, O, directly extracted

from the images, will contain a lot of noise due to creases,

scars, blurring, etc. As shown in Fig. 8a, the original

orientation field, O, is computed using the state-of-the-art

hierarchical gradient-based method [27]. Although this

works well in most of the effective region, there is still

some noise in the marked areas, which will influence the

computation of Ið@�Þ. To smooth out this kind of noise, we

adopt the polynomial model-based method proposed by us

in [28]. We use two bivariate polynomials, P ðx; yÞ ¼P
i;j pijx

iyj and Qðx; yÞ ¼
P

i;j qijx
iyj, to approximate

cos 2O and sin 2O, respectively. The parameters, fpij; qijg,
can be estimated with the Least Squares method linearly.

After this approximation, the smoothed orientation field

can be reconstructed as

OP ðx; yÞ ¼
1

2
arctan

P
i;j qijx

iyjP
i;j pijx

iyj
: ð11Þ

Fig. 8b shows the orientation field after smoothing.

Although the polynomial-based reconstruction is not good

enough at the regions near the singular points in the center

of �, it can well model the orientation field near the

boundary and effectively remove the noise and thus keep

the global topological property invariant. This is just what

we need to robustly compute Ið@�Þ. In Fig. 8c, the

boundary of the fingerprint along with the singular points

is depicted. The results also verify our conclusion about the

topological constraint about the singular points.

By computing the global Poincaré Index Ið@�Þ, we can

easily remove some invalid combinations of singular points.

For example, when the global Poincaré Index is equal to 1,

the combinations of 1-core-0-delta and 2-core-1-delta are

calculated and other situations are not considered. This

speeds up the algorithm greatly.

4.2 Selection of Optimal Singular Points

As known, singular points can be used to determine the

global structure of the orientation field of fingerprints. In

fact, there are several orientation field models related to

singular points [4], [5], [29]. Our basic idea is to select the

optimal singular points by minimizing the difference

between the original orientation field and the model-based

orientation field reconstructed using the singular points.

Denote the original orientation field as O0 and the

reconstructed orientation field as Oð�; sÞ, where � is the

model’s parameter. The original orientation field, O0, is

computed by the hierarchical gradient-based method [27].

As for the model-based reconstructed orientation field,

Oð�; sÞ, we choose the Zero-Pole model proposed by

Sherlock and Monro [4], considering both the model

accuracy and the computational efficiency. This model is

based on the singular points, s, which takes the cores as

zeros and the deltas as poles in the complex plane. It can be

formulated as

Oðx; y;�; sÞ ¼ 1

2
arg ei� �

Q
iðz� zciÞQ
jðz� zdjÞ

 !
; ð12Þ

where z ¼ xþ iy, zci is the ith core, zdj is the jth delta, and

� 2 ½0; 2�Þ is a background angle to be decided. However,

how to estimate � is not mentioned in previous works. In

our study, we propose estimating the background angle �

using a Least Square Meaning (LSM) measurement. The

optimal � is estimated by

�� ¼ arg min
�
Jð�Þ; ð13Þ
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TABLE 1
Frequent Combinations of Singular Points

in a Complete Fingerprint

Fig. 8. Computation of the orientation field (a) by hierarchical gradient-based method [27], (b) after using polynomial model-based method [28],

(c) blue curve is the boundary of the effective region, cores and deltas are marked with circles and triangles, respectively, and Ið@�Þ ¼ 0, which

means the numbers of cores and deltas may be (0, 0), (1, 1), or (2, 2).



where

Jð�Þ ¼
X

�

sinð2Oþ �Þ � sin 2O0ð Þ2þ cosð2Oþ �Þ � cos 2O0ð Þ2:

ð14Þ

Each singular point is denoted by a triple, ðx; y; tÞ, with

its positions and type (core/delta). All singular point

candidates are in the set S ¼ fðxi; yi; tiÞgMi¼1. The set of true

singular points, s, is a subset of S. The optimal singular

points can be selected as

s� ¼ arg min
s�S

Oð�; sÞ �O0k k; ð15Þ

where the difference function, k � k, is defined as Jð��Þ (see

(13) and (14)). The process of singular point selection is

summarized in Algorithm 2.
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Fig. 9. Flowchart of our proposed detection method.



Algorithm 2 Pseudocode of the optimal selection step

Input: the candidate singular points set, S

Output: the selected singular points’ combination, s�

1 Reconstruct the orientation field Op use polynomial

model (see (11)).

2 Compute the global Poincaré Index Ið��Þ.
3 Determine the candidate combinations, C, based on

Table 1.

4 e ¼ MAX (a large enough number)

5 for each combination c in C do

6 Reconstruct the orientation field O using c by

Zero-Pole model (see (12), (13), and (14))

7 Computer the error between O and the original

orientation filed O0: etmp ¼ kO0 �Ok, where k � k
is defined as Jð��Þ (see (13) and (14)).

8 if etmp < e, then

9 e ¼ etmp;

10 s� ¼ c.
11 end

12 end

The flowchart of the whole detection algorithm is shown

in Fig. 9.

5 EXPERIMENTAL RESULTS

We test the proposed method on NIST Special Database 4

(NIST-4) [30] and public fingerprint databases FVC02 DB1

and DB2 [31].
The NIST-4 contains 2,000 pairs of fingerprint images

(two instances, f and s, for each entity), and the images are

512 � 512 with 8 bits per pixel.
Both DB1 and DB2 from FVC02 contain 800 fingerprints,

i.e., 100 fingers and eight prints for each finger, respectively.

The FVC02 database has the following features:
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TABLE 2
The Performance of DORIC on NIST-4

TABLE 3
The Performance of DORIC on FVC02’s DB1

TABLE 4
The Performance of DORIC on FVC02’s DB2

TABLE 5
The Comparison Results of Different Detection Algorithms on NIST-4



1. fingerprints collected in three sessions with at least
two weeks time separating each session;

2. no efforts were made to control image quality and
the sensors were not systematically cleaned;

3. at each session, four impressions were acquired for
each of the four fingers of each volunteer;

4. during the second session, individuals were re-
quested to exaggerate displacement (impressions 1

and 2) and rotation (3 and 4) of the finger, not to
exceed 35 degrees;

5. during the third session, fingers were alternatively
dried (impressions 1 and 2) and moistened (3 and 4).

We chose 360 fingerprints for training data (320 finger-
prints from FVC00 DB1_b, DB2_b, DB3_b, DB4_b, and
40 fingerprints from the NIST Special Database 14), which
is only used for the SVM-based DORIC feature classifier.
The fingerprints in the training set are different from the
testing set. After the Poincaré Index-based method, singular
points are manually labeled as true or spurious and then
used for training the SVM.

The singular points of all of the fingerprints in the testing
database are manually labeled beforehand to obtain ground
truth. For a ground truth singular point, ðx0; y0; t0Þ, if a
detected singular point, ðx; y; tÞ, satisfies t ¼ t0, jx� x0j < 5
(pixels), and jy� y0j < 5 (pixels), it is said to be truly detected
and, otherwise, it is called a miss. The detection rate is defined
as the ratio of truly detected singular points to all ground
truth singular points. The miss rate is defined as the ratio of
the number of missed singular points to the number of all
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TABLE 6
The Comparison Results of Different Detection Algorithms on FVC02’s DB1

TABLE 7
The Comparison Results of Different Detection Algorithms on FVC02’s DB2

TABLE 9
The Comparison Results with Chikkerur and Ratha [16]

on FVC02’s DB1

TABLE 8
The Comparison Results with Chikkerur and Ratha [16]

on NIST4

TABLE 10
The Comparison Results with Chikkerur and Ratha [16]

on FVC02’s DB2



ground truth singular points. It can be seen that the sum of
detection rate and miss rate is 1 or 100 percent. The false
alarm rate is defined as the number of falsely detected
singular points versus the number of all ground truth
singular points. If all singular points are detected and
there are no spurious singular points in a fingerprint, the
fingerprint is said to be “correctly” detected (see the last
row in Tables 5, 6, 7, 8, 9, and 10).

We perform singular point detection according to the
algorithm shown in Fig. 9. The effective region is extracted
by computing the mean and the variance of the intensity
value on each block and doing simple binarization (an
“effective” block should have the mean in [20, 220] and the
variance greater than 6 in our study). Morphological
operators including dilation and erosion are made to
remove some isolated points and to fill large holes. The
order of the polynomials is set to 4 in the orientation-field-
smoothing step.

5.1 Performance of the Doric Feature

The performance of removing spurious singular points
using DORIC is listed in Tables 2, 3, and 4. The first two

steps of the proposed algorithm are: the Poincaré Index
method (Step 1) and removing spurious singular points by
DORIC (Step 2). For each table, the “miss rate” and “false
alarm rate” of Step 1 and Step 2 are shown. From the result,
it can be seen that a large percentage of the spurious SPs can
be removed by using DORIC features.

5.2 Comparison with Other Poincaré Index-Based
Methods

We have also compared the proposed detection algorithm
with some conventional Poincaré Index-based algorithms.
Since our algorithm is developed from the Poincaré Index,
we first chose three widely used Poincaré Index-based
algorithms for comparison, including a rule-based algo-
rithm [1], Tico’s algorithm [7], and Ramo’s algorithm [10].
The comparison results are listed in Tables 5, 6, and 7. In
Fig. 10, we present the detection results on some typical
fingerprints, which suffer the difficulties of creases, scars,
smudges, dryness, damped or blurred prints, etc. The four
rows (from top to bottom) show the detected results using
rule-based algorithm [1], Tico’s algorithm [7], Ramo’s
algorithm [10], and the proposed algorithm, respectively.
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Fig. 10. Some comparison results of singular point detection. The four rows (from top to bottom) show the detected results using the rule-based

algorithm [1], Tico’s algorithm [7], Ramo’s algorithm [10], and the proposed algorithm, respectively.



From these results, we can see that the singular points can
be more robustly detected by using the proposed algorithm
and the detected positions are reasonably accurate.

5.3 Comparison with Non-Poincaré Index-Based
Method

There are also many other methods of singular point

detection, among which, the recent technique based on

complex filtering has been reported to obtain a better

performance than others. Nilsson et al. [14], [15] first

proposed the approach based on complex filtering, which

relies on detecting the parabolic and triangular symmetry

associated with core and delta points. Chikkerur and Ratha

[16] improved the technique by using three additional

certainty maps that represent heuristics about the likely

positions and orientations of cores and deltas.
To give a completely comparative study, we also

compare the proposed algorithm with that of Chikkerur

and Ratha [16]. The comparison results are listed in Tables 8,

9, and 10. These results show that the proposed algorithm

has a better performance. The proposed algorithm has a

higher detection rate and lower false alarm rate for singular

points (cores þ deltas), and a much higher correct rate for

whole fingerprints. Based on these results, our algorithm

shows a satisfactory performance for real applications.
The proposed method is suitable for real-time proces-

sing. Both the polynomial-based smoothing and the selec-

tion with the global orientation field can be done linearly by

Least Squares Method. The Zero-Pole model-based recon-

struction does not take much time and the topological

constraint and DORIC feature effectively remove lots of

spurious detections. Our algorithm is currently implemen-

ted with Matlab and C on an AMD 2200 Hz 512 Mbyte PC

without optimization. The average processing time for each

fingerprint is around 0.10 second. This makes the proposed

algorithm feasible for real applications.
It should be mentioned that the proposed algorithm can

also be utilized for the detection of singular points in other

fields. For example, we can use it to detect vortexes and

saddles in a fluid image (see Fig. 11 for an example).

6 CONCLUSION

To sum up, we have focused on the detection of singular
points in fingerprints in this paper. Our contributions lie in
two aspects. 1) We propose a new feature, DORIC, in
addition to the Poincaré Index, which can effectively
remove spurious detections and 2) we take the topological
relations of singular points as a global constraint for
fingerprints and propose a novel algorithm for singular
point detection using the global orientation field. The
optimal singular points can be selected by minimizing the
difference between the original orientation field and the
model-based orientation field reconstructed from the
singular points. Experimental results have shown that the
proposed algorithm is effective for singular point detection,
better than the reported best results.
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