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Abstract

Recovering the spectral reflectance of a scene is impor-
tant for scene understanding. Previous approaches use ei-
ther specialized filters or controlled illumination where the
extra hardware prevents many practical applications. In
this paper, we propose a method that accurately recovers
spectral reflectance from two images taken with conven-
tional consumer cameras under commonly available light-
ing conditions, such as daylight at different times over a
day, camera flash and ambient light, and fluorescent and
tungsten light. Our approach does not require camera spec-
tral sensitivities or the spectra of the illumination, which
makes it easy to implement for a variety of practical appli-
cations. Based on noise analysis, we also derive theoretical
predictors that answer: (1) which two lighting conditions
lead to the most accurate spectral recovery overall, and (2)
for two given lighting conditions, which spectral reflectance
is more likely to be estimated accurately. We implement
the method on a variety of cameras from high-end DSLRs
to cellphone cameras, and apply the recovered spectral re-
flectance for several applications such as fine art reproduc-
tion, fruit identification, and material classification. Both
simulation and experimental results demonstrate the effec-
tiveness of the proposed method.

1. Introduction
Estimating the spectral reflectance of a scene is an es-

sential component for scene recovery in computer vision.
There is a large literature of spectral reflectance recovery
by using multiple images acquired with either specialized
filters, such as w/ and w/o a colored filter [5], a pair of yel-
low and blue filters [2, 21] and liquid crystal tunable filters
(LCTF) [6], or controlled illuminations, such as LED arrays
[18] and a DLP projector with a color wheel [7]. While they
can obtain accurate results, most of these methods require
extra hardware for imaging, which prevent many practical
applications such as those in the outdoors with consumer-
grade cameras (e.g. smartphone cameras, point-and-shoot
cameras, and DSLRs).

In this paper, we aim to recover spectral reflectance un-
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Figure 1. The proposed method is to recover the scene reflectance
under commonly available light sources. (a) The normalized spec-
trum of some commonly available light sources (normalized to be
1 at 560nm). (b) The rendering of a ColorChecker R©(CC) under
these light sources.

der commonly available light sources with consumer-grade
cameras, including the daylight at different times of a day,
indoor fluorescent light, camera flash, tungsten light, etc.
For example, in museums, we aim to recover the spectral
reflectance of paintings using ambient light and a camera
flash. In remote sensing, we hope to classify materials by
recovering spectral reflectance from a pair of images taken
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Table 1. Description of the light sources in the experiment (CCT:
Correlated Color Temperature)

Light source Description
Daylight daylight measured at different times

in a day
Fluorescent overhead office light
Tungsten a popular light source used at home

and museums
Camera flash camera flash (CCT: 5500K)
Cool white light source commonly found in the

light booth (CCT: 3867K)
Illuminant A light source commonly found in the

light booth (CCT: 2817K)
Horizon light source commonly found in the

light booth (CCT: 2256K)
Studio flash
light w/ softbox

a popular photographic lighting de-
vice (CCT: 5816K)

at differnt times of a day. Under tungsten and fluorescent
light in a grocery store, we want to perform food inspection
by acquiring their spectral reflectance. The integration of
cameras and computing power unit allows more convenient
and portable applications to recover the spectral reflectance.

The spectral power distribution of some commonly
available light sources are plotted in Fig. 1 (a). A
ColorChecker R©(CC) is rendered under each light source in
Fig. 1 (b). We can clearly see the difference in appearance
across images which provides sufficient information to re-
cover the underlying spectral reflectance. Table 1 summa-
rizes the characteristics of these light sources in our paper.

Specifically, we propose a method to recover the spectral
reflectance from two images taken under any two of these
commonly available lighting conditions. Our method does
not need to know the spectral sensitivity of the camera or the
spectral power distribution of the light sources like in prior
works. Instead, we require only a simple calibration step by
taking a picture of a color target under the two lighting con-
ditions. Based on the analysis of noise propagation of the
proposed method, we derived two predictors that answer (1)
which two lighting conditions result in the optimal spectral
recovery overall, and (2) for two given lighting conditions,
which spectral reflectance is likely to be recovered more ac-
curately. We tested the proposed method on a variety of
consumer cameras from high-end DSLRs to cellphone cam-
eras, and applied the recovered spectral reflectance for sev-
eral applications including fine art reproduction, fruit iden-
tification, and material classification, as shown from Figs.
4 to 7. Experimental results show the effectiveness of the
proposed method and analysis.

2. Related Work
Spectral Imaging with Filters Many previous works
on spectral imaging are implemented with multiple filters
mounted in front of a camera lens [2, 21, 6, 5]. While ac-

curate results can be obtained, these systems are usually ex-
pensive to build. In addition, changing filters during imag-
ing may introduce pixel shifts among acquired images. Re-
cent works [20, 10] proposed to use novel assorted pixel
image sensors to capture multispectral images with a single
shot, by trading spatial resolution for spectral channels.

Spectral Imaging with Controlled Illumination One
can also use multiple controlled illumination for spectral
imaging. Park et al. [18] used an array of LEDs and de-
signed optimal multiplexed illumination for spectral imag-
ing. Han et al. [7] used the color wheel in a DLP projector
to produce multiple light sources for recovering spectral re-
flectance. In both systems, the lightings need to be carefully
designed and controlled to function in an indoor environ-
ment. Moreover, the spectral sensitivity of the camera and
the spectral power distribution (SPD) of the light sources
need to be measured in advance.

Model-based Spectral Imaging Many researchers have
used various models or statistical priors of natural images
for spectral imaging. Marimont and Wandell [15] proposed
a linear model of surface and illuminant spectra. Maloney
[14] and Ohta and Hayashi [17] described methods to re-
cover both scene reflectance and illuminant spectrum si-
multaneously using a daylight model, assuming the camera
spectral sensitivity is known. Morovic and Finlayson [16]
proposed to use the probability distribution of natural ob-
ject reflectance to estimate surface reflectance from camera
RGB. Smits [19] presented an algorithm to convert from
RGB values to reflectances.

In our work, we propose a method to recover the scene
reflectance under commonly available light sources with no
knowledge of the lighting or the camera spectral sensitivity.
3. Spectral Reflectance Recovery

In this section, we show the details of the proposed
method. We need two images taken under two differ-
ent light conditions to recover the spectral reflectance of a
scene. Part of the derivation is similar to that in [2] and [1].

Specifically, for a scene point, the pixel intensity I cap-
tured by a camera is equal to an integration of the product of
the spectral reflectance of the pointR(λ), the spectral power
distribution of the illuminant P (λ), and the camera spectral
sensitivity C(λ) across the visible wavelength range from
390nm to 720 nm,

I =

∫ 720nm

390nm

C(λ)P (λ)R(λ) dλ. (1)

For a RGB camera, we can write this equation in a
matrix form, I = CPR, where I = [IR, IG, IB ]T

is a triplet of the pixel intensities in RGB channels,
C is a 3 × 34 matrix (assuming we have 34 bands
from 390nm to 720nm with an interval of 10nm), P =



diag(P (390nm), P (400nm), · · · , P (720nm)), and R =
[R(390nm), R(400nm), · · · , R(720nm)]T .

As shown in many previous works [4, 13, 9], the spectral
reflectance of real-world objects can be well approximated
as a weighted linear combination of a few basis spectra.
Thus, R can be decomposed as

R = Bσ, (2)

where B = [B1(λ), · · · , BK(λ)] in which each of the
K columns corresponds to one basis spectrum, σ =
[σ1, · · · , σK ]T is a vector of scalars (i.e., weights) for the
spectral reflectance R. K is the number of basis vectors
used in the model. Dimension reduction techniques, such as
Principle Component Analysis (PCA), can be used to calcu-
late the basis vectors. Combining the above two equations,
we have I = CPBσ. The eigenvectors were extracted from
a database [9] of 1250 Munsell chips and used as basis vec-
tors.

Assuming we take M images of the same scene at dif-
ferent illumination conditions, we have M such equations
which can be concatenated as: I1

· · ·
IM

 =

 CP1B
· · ·

CPMB

σ. (3)

To recover the spectral reflectance (i.e., σ) from the ac-
quired images (i.e., I1, · · · , IM ), we need to know the ma-
trix T = [CP1B; · · · ; CPMB]. T is a 3M × K matrix,
encoding the information of the camera spectral sensitivities
and the multiple lighting conditions. Previous works [4, 13]
show that K = 6 is sufficient for most real-world objects.
Thus, to recover spectral reflectance scalar, σ, M = 2 im-
ages are sufficient (in this case, T is a 6× 6 matrix).
3.1. System Characterization

The matrix T can be estimated by capturing two images
of six samples with known reflectance. Table 2 summarizes
several ways to estimate T. First, T can be calculated in
a least square sense by minimizing the difference between
pixel intensities (i.e., scene radiance). In practice, however,
directly optimizing T−1 by minimizing reflectance differ-
ence often yields better results. Finally, whenever percep-
tual color accuracy is a major concern (e.g., in the context of
fine art reproduction), one can optimize T−1 by minimizing
color difference.1 In our experiments, we found minimizing
reflectance difference and color difference have comparable
results, and their results are almost always better than that
of minimizing radiance difference.

The six samples of known reflectance for system char-
acterization can be obtained according to specific applica-

1The color difference equation (∆E00, CIEDE2000 [12]) is used to
quantify the perceptual color difference between the two samples in Table
2. More details are given in the supplementary document.

Table 2. Optimization methods of T

Method Equation

Radiance difference minT̂(||T̂ · σ − I||)
Reflectance difference minT̂−1(||R̂−R||)

Color difference minT̂−1(||∆E00(R̂,R)||)

tions. For example, for regular photography or industry ap-
plications, one can put a color checker or other color targets
into the scene before acquiring images; for some applica-
tions such as fine art reproduction or remote sensing , one
might already know or can easily measure the spectral re-
flectance for a few points in a given scene.

Once we know T for two given lighting conditions, we
can recover the spectral reflectance for an unknown surface,
R̂, as follows

R̂ = BT̂−1I, (4)

where I = [I1; · · · ; IM ] includes all the measured images.
3.2. Spectral Reflectance Reconstruction

The reconstruction based on Eq. 4 is a baseline method.
In practice, we found that certain priors of spectral re-
flectance of real-world objects can be used to further im-
prove the performance. For example, the reflectance curves
of real-world objects are mostly smooth, and thus we can
add a smoothness constraint for reflectance recovery,

min
σ̂

(|||T · σ̂ − I|2 + α|∂
2R

∂λ2
|||) (5)

where the second derivative of the spectral reflectance
∂2R/∂λ2 is to be minimized, and α is to adjust the weight
of the smoothness parameter. Note Eq. 5 can still be opti-
mized via a linear least square method.

Another prior is to recover a Maximum-a-Posterior
(MAP) estimation by considering the probability distribu-
tion of the recovered spectral reflectance, in which we
model the probability of all spectral reflectance as a Gaus-
sian Mixture Model (GMM)[11].

We found in experiments these two priors are compara-
ble to each other, and often yields better results than the
baseline method. In our experiments, we use the smooth-
ness constraint and set α = 1 for all experiments.
3.3. Performance Prediction by Noise Analysis

The above method works for images taken under any two
different lighting conditions. Can we tell which two light-
ing conditions are optimal overall for recovering spectral
reflectance? Moreover, for two given lightings, can we pre-
dict which spectral reflectance can be best estimated?

In this section, we derive two predictors that answer the
above questions by analyzing the noise propagation. As-
sume that the measured radiance is composed of true signal
and noise, i.e., I = s + n, where s is a vector of signals and



n = [nR,1, nG,1, nB,1, nR,2, nG,2, nB,2]T , corresponding
to the noise in the red, green and blue channel in the first
and second picture. The estimated vector of scalars of the
spectral reflectance can be expressed as

σ̂ = T−1 · (s + n) (6)

The noise contribution to the estimated reflectance becomes

∆R = BT−1 · n = W · n, (7)

where W = BT−1 is a matrix of size 33 × 6. The matrix
W only depends on the lighting conditions and the eigen-
vectors of the PCA model.

Two diffferent types of noise are considered. One is
Gaussian additive noise (accounts for read noise and ADC
noise), and the other is photon noise. Due to space limita-
tion, we put the analysis of Gaussian additive noise in the
supplementary material. Below we discuss the case for pho-
ton noise, since it is more prominent than read noise in most
scenarios.

Photon Noise We know for photon noise, its variation is
linearly proportional to the signal, i.e.,

Var(n) = k · I0 = k ·Tσ0 = k ·TBTR, (8)

where σ0 is the 6 × 1 PCA coefficients for a given spectral
reflectance curve R, and B is a 6× 33 matrix of the top six
eigenvectors. The predictor to tell the overall performance
of the lighting condition can be calculated by Eq. 9,

Z = 1T ·W2 ·TBT · 1. (9)

Note that in this equation, W2 means element-wise square.
For any given two light sources, we can compute the cor-
responding Z value that will tell us how good they are for
recovering spectral reflectance overall.

Next, we hope to find a predictor for the second question.
We can directly evaluate the normalized RMSE as follows:

ρ =
||∆R||
||R||

=

√
1T ·W2 ·TBT ·R

RTR
. (10)

For two given lighting conditions, we know T, W, and B.
Thus we can evaluate ρ for a given spectral reflectance R to
predict the normalized RMSE for the recovery under these
two lighting conditions. The derivations of Eq. 9 and 10
can be found in the supplementary materials.

To validate these two predictors, we simulated the sig-
nals under the fluorescent light and tungsten light, using
a ColorChecker Passport R©(CCP) for characterization and
a ColorChecker DC R©(CCDC) for validation. The true
signals were calculated given T, and photon noise was
mixed to form the simulated signals, based on which the
reflectance was estimated by Eq. 4. A high correlation be-
tween ρ and the normalized spectral RMS error can be ob-
served in Fig. 2, indicating that ρ can be used to predict
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Figure 2. The consistency between ρ (by Eq. 10) and the normal-
ized spectral RMS error for patches in CCDC. Each triangle is a
color patch in CCDC. A high correlation can be found between
ρ and the spectral recovery accuracy. Therefore, ρ can be used
to predict which reflectance is likely to be estimated well given a
lighting.

which reflectance can be well estimated given two lighting
conditions.

We also conducted real experiments under a variety of
lighting conditions. The results are summarized in Table 3
and Fig. 3. The results show the values of the two predictors
are highly correlated with the RMS error of the recovered
spectral reflectance. See below for detailed explanation.

4. Experiments
4.1. Multispectral Imaging System

We test the proposed method on a variety of cameras, in-
cluding Canon 50D, 5D, 60D, 550D and cellphone camera,
Nokia N900. Among them, we remove the infrared filter
of Canon 5D and Canon 550D to check whether there will
be performance improvement at longer wavelength. Nokia
N900 is included to explore spectral recovery applications
on mobile devices. We perform flat-fielding when needed
to ensure the uniformity of the light on the scene.

Ground truth was collected to evaluate the perfor-
mance of the method. We measured the spectral re-
flectance of color checkers, selected areas on the paintings,
fruits and outdoor materials by a spectrophotometer X-Rite
i1Pro R©from 380nm to 730nm with an internval of 10nm.

4.2. Validation using ColorChecker DC R©

We use a CCP R©to get T, and a CCDC R©(w/ 240 color
patches) for validation. Duplicate patches in CCDC R©are



Table 3. Validation of the proposed method on CCDC under dif-
ferent lighting combinations. Both the spectral and colorimetric
recovery performance are evaluated. Based on the tabulated data,
the recovery performance correlated well with Z.

removed to prevent overweighting patches of any specific
color.

Table 3 shows the results, which includes the spectral
RMS error, ∆ED65 and ∆EIllA. We provide color differ-
ence values (∆E) because a close spectral match does not
necessarily result in a close perceptual match in color ap-
pearance. In Table 3, The result by the PCA model was
calculated directly based on the retained eigenvectors in the
model, thus being the theoretical lower limit of the error.
The recovery performance correlated well with Z by Eq. 9.
Therefore, the overall spectral recovery performance could
be determined by calculating Z. The measured and esti-
mated reflectance on certain patches in CCDC are shown in
Fig. 3 as examples.

In Fig. 3, the spectral recovery of CCDC R©was made un-
der fluorescent light and tungsten light. The estimated and
measured reflectance matched well in general. The mean
spectral RMS was 0.03, and the color difference under CIE
D65 and CIE IllA were both close to 1 (the threshold of
detecting a difference in color perceptually).

We calculated ρ on the experimental data to tell which
reflectance is likely to be estimated well under the light-
ing conditons. In Fig. 3 (b), two patches of small and
large value of ρ were selected, and their estimated and mea-
sured reflectance (both after normalization) compared. The
greater the ρ, the worse the spectral recovery performance.
5. Applications
5.1. Metamer

A metameric pair are two samples that differ in spectral
reflectance but match in color under an illuminant. The re-
covery of the spectral reflectance allows distinguishing the
metameric pair that may be difficult to tell apart perceptu-
ally, as shown in Fig. 4.

In Fig. 4, the metameric pair appears the same under the
fluorescent light (the bottom patch in Fig. 4 (a) and (b)), but
they look differently when illuminated by the tungsten light

Figure 3. Validation of the proposed method using CCDC under
fluorescent light and Tungsten light. (a)The estimated and mea-
sured reflectance of certain patches in CCDC. The numbers on the
top of each plot are the spectral RMS error, color difference un-
der CIE D65 and IllA. The patch index (#) is shown as well. A
close spectral and colorimetric match could be achieved generally
between the ground truth and our result. (b) Noise analysis was
performed by calculating ρ by Eq. 10 to tell which reflectance
is likely to be predicted better under the lighting condition. Two
patches were selected with small and large ρ. While the patch on
the right in (b) is darker in color, its spectral RMS error would
become much greater when making tone reproduction.

(the top patch in Fig. 4 (a) and (b)). By taking pictures of
the metameric pair under the fluorescent and tungsten light
using a camera w/ IR-filter removed, the spectra of the two
samples are recovered as shown in Fig. 4 (a) and (b). Based
on the recovered spectra, we are able to tell that the two
samples are metameric rather than matching spectrally. The
reason to remove the IR-filter of the camera is that a lot of
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Figure 4. The spectral recovery of a metameric pair under the flu-
orescent light and tungsten light. (a) and (b) The reflectance of
the two samples. Being metameric, the samples appeared almost
the same in color under the fluorescent light (bottom patch in (a)
and (b)), but different when illuminated by the tungsten light (top
patch in (a) and (b)). When pictures were taken using the camera
w/ IR-filter removed, the reflectance of the metemeric pair can be
well reconstructed and distinguished.

metamers differ in the longer wavelength region spectrally,
to which our eyes are less sensitive. The removal of the
IR-filter allows cameras to be sensitive to those regions.

5.2. Spectral Imaging of Fine Arts

The determination of the spectral reflectance per pixel
for a painting enables the reproduction to have the same
color appearance as the original despite of changes in the
lighting condition. Yet, most museums nowadays rely on
expensive spectral imaging systems that require specialized
filters or controlled illumination [8, 21]. We show that under
two common lighting conditions, we can recover spectral
reflectance with a regular DSLR camera.

Figure 5 shows the result, where an oil painting was cap-
tured by Canon 60D under the fluorescent light and tungsten
light. In Fig. 5, a close spectral match could be achieved
overall between the recovered and measured reflectance.
Besides, the colorimetric error under both CIE D65 and IllA
were calculated, and they were reasonably small. The ren-
dering of the painting was made under CIE D65 and IllA.

5.3. Fruit Identification and Quality Control

Spectral reflectance is also critical for food inspection
and quality control. An example is shown to identify fruits
by reflectance. Before the experiment, a database was
created by including measured reflectance of ten different
kinds of fruits. Next, we captured fruit under the fluores-
cent light and the tungsten light by Canon 60D in Fig. 6.

The reflectance estimated at each pixel was compared
with that of known fruits in the database. The spectral
RMS error was calculated, based on which the labeling of
fruits was made. In Fig. 6 (e), the carrot (P1), avocado
(P4), squash (P5) and papaya (P6) were identified correctly.
However, the pumpkin (P2) and mango (P3) were misclas-
sified, because their spectral reflectance curves are close.

(a) fluorescent light (b) tungsten light

(f) CIE D65 (g) CIE IllA

(c) P (d) Q (e) R

Q
R

captured images

rendered images 

reflectance

P

ground truth

our result

Figure 5. The spectral recovery and rendering of the oil painting
Daisy. (a) and (b) The captured images under the fluorescent light
and the tungsten light. (c), (d) and (e) The reflectance estimated
and measured at selected areas (P, Q and R) on the painting. (f)
and (g) The rendered image under CIE D65 and IllA.

The identification of fruits by the spectral information is
robust to the scene illuminant and to the distortion of the
food shape during the processing of food. In addition, if the
spectral images of the fruits at different times (e.g. when
they were ripe or rotten) are available, the identification re-
sults can be useful as a quality control measure.

5.4. Material Classification under Daylight
Our method can also be used outdoor, by leveraging the

change in the daylight spectrum over time during a day.
This is potentially useful for remote sensing applications
where airborne images can be taken of the same sites at dif-
ferent times during a day.

In Fig. 7, materials are classified under daylight by re-
covered scene reflectance. Pictures are taken outdoor on
a cloudy morning in Fig. 7 (a) and (b). Fig. 7 (a) ap-
pears more bluish than (b), resulting from the greater rela-
tive power at the shorter wavelength of the daylight at 7:41
a.m. Materials including vegetation, soil, ceramics, metals,
and plastics were captured, and the estimated reflectance
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(d) recovered spectral reflectance: P1-P8

(c) spectra of daylight (e) rendering under CIE IllA (f) classification result
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Figure 7. The spectral recovery and classification of materials under daylight. (a) and (b) The captured pictures under daylight at 7:41 a.m.
and 10:05 a.m. (c) The daylight spectra (normalized to be 1 at 560 nm). (d) The measured and estimated reflectance of the aloe, ceramic
(the specular side), copper, ceramic (the diffuse side), gray plastic, soil, green plastic, and aluminum. (e) The rendering of the scene under
CIE IllA. (f) All materials were classified (indicated by different colors). The CCP was included to characterize the lighting.

and the rendering of the scene are in Fig. 7 (d), and (e).
The classification was made by Nearest Neighbor and

based on the estimated reflectance of the objects. Materials
were distinguished and colorized in Fig. 7 (f). All eight ma-
terials were able to be classified correctly. The experimental
result implies potential applications for spectral reflectance
recovery in outdoor surveillance or remote sensing.

6. Limitations and Conclusion
In this paper, we proposed to recover the scene re-

flectance under commonly available lightings. Through the
noise analysis, we are able to (1) identify the lighting condi-
tion that overall gives more accurate spectral recovery, and
to (2) learn which reflectance can be well recovered under
certain lighting. We applied our method to several practi-
cal scenarios, including fine art reproductions and material
classifications. Both the simulation and experimental re-
sults show that the method can accurately estimate the re-
flectance under everyday lighting conditions.

The proposed method has several limitations. While
the knowledge of camera spectral sensitivity and the light
source are not required, color patches of known reflectance

are needed to characterize the system, which we plan to ad-
dress in our future work. A potential solution is to explore
statistical priors and correlations within real-world hyper-
spectral images [3].

Next, the object surface needs to be nearly flat and dif-
fuse. Small differences in surface smoothness may be neg-
ligible as long as they are incomparable to the distance be-
tween the camera and the object.

Finally, we realize that our method requires both the
reflectance and illumination to be broadband. For exam-
ple, our method will fail if narrow-band lasers are used as
light sources. Fortunately, almost all real-world objects and
commonly-available lightings have broadband spectra, as
shown in Fig. 1, and we can also use the predictor Z to
tell the goodness of two given lighting conditions.
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