Discriminative Illumination:
Per-pixel Classification of Raw Materials based on Optimal Projections of Spectral BRDFs

Jinwei Gu and Chao Liu

Munsell Color Science Laboratory
Chester F. Carlson Center for Imaging Science
Rochester Institute of Technology
http://www.cis.rit.edu/jwgu
Raw Material Classification: What & Why?

• Classify *unpainted/uncoated* materials with appearance features (e.g., spectral reflectance, BRDF, translucency, polarization, texture, etc.)

Pigment Identification

Sorting Scraps for Recycling

Egg Candling

Skin Monitoring for Smart Health
Classifying Materials with Spectral BRDF

- Define “materials” as Spectral Bidirectional Reflectance Distribution Function (BRDF)
- Suitable for some pure, raw materials (e.g., metal, ceramic, plastic, paint)
Spectral BRDF is more than Color + Gloss

Stainless Steel

Alloy Steel 4130

Carbon Steel A366

Alloy Steel 4130
Related Work

• Paint classification using BRDF slices
 [Wang et al. 2008]

• Optimal subset of illumination for steel classification
 [Jehle et al. 2010]

• Passive Approach: Material Recognition in Human Vision
 and Computer Vision
Challenge: High-Dimensionality

- Spectral BRDF (Slice) for Per-pixel Classification

\[f(\theta_i, \phi_i, \theta_o, \phi_o, \lambda) \]

\[\mathbf{x} = [f_1, f_2, \cdots, f_N]^T \]

\[y = \mathbf{w}^T \mathbf{x} + b \]
Use Coded Illumination as a Classifier

- Directly measure “discriminative projections” of spectral BRDFs

\[I = \mathbf{w}^T \mathbf{x} \]

Measured Feature Coded Illumination BRDF vector
Learn Discriminative Illumination via Supervised Learning

• Take advantage of existing, labeled BRDF measurements

Fisher LDA:

\[
\min \frac{w^T S_w w}{w^T S_b w} \quad \text{s.t.} \quad w^T w = 1
\]

SVM:

\[
\min \frac{1}{2} \|w\|^2 \quad \text{s.t.} \quad y_i (w \cdot x_i - b) \geq 1
\]

• Implement as the subtraction of two light patterns

\[w = w^+ - w^- \]
LED-based Multispectral Dome

- 25 LED clusters, 6 primaries, PWM control via Arduino boards
Raw Material Database

- 5 classes (metal, plastic, fabric, ceramic, wood)
- 7 subclasses in metal: alloy steel, carbon steel (cold/hot roll), stainless steel, aluminum, brass, copper.
- 100 samples in total
- 25*6=150 HDR images (1392x1040) per sample

Available online at www.cis.rit.edu/jwgu/research/fisherlight
Example: Carbon Steel vs Alloy Steel

Alloy Steel (4130) Carbon Steel (A366)
Results

SVM Light

- more videos at the project webpage
Classification Result (95% accuracy)

- In comparison, using the optimal 2 raw measurements (out of the 150) only results in 41% accuracy.
SNR Benefits Due to Light Multiplexing

• For read noise, the SNR gain is

\[\sqrt{\frac{M}{2}} \leq G_r \leq \frac{M}{\sqrt{2}} \]

• For photon noise, the SNR gain is

\[1 \leq G_p \leq \sqrt{M} \]

where \(M \) is the number of raw measurements.

(Please refer to the paper for detailed proof)
SNR Benefits: Simulation Results

- Based on the MERL BRDF database, with both photon noise and read noise. [Matusik, et al., 2003]

paint vs plastic

噪声级别（%）

准确性（%）

SVM Light

Raw Measurements

phenolic vs metal

噪声级别（%）

准确性（%）

SVM Light

Raw Measurements
Extension 1: Multi-Class Classification

• Use multiple discriminative illuminations (e.g., one-vs-one, one-vs-many)
Results

SVM Light (94%)

Optimal subset of Raw Measurements (62%)
Extension 2: Nonlinear Classification

- Cascade structure: from linear to nonlinear

[Viola & Jones, 2001]
Aluminum Detection for Recycling

Four-stage Cascade Classifier
Extension 3: Surface Normal Variation

- Augment training data with rotational copies of BRDFs
- Limited to mild normal variation (+/- 10 degrees)
Sorting Aluminum by Alloy Family

- A challenging yet highly-demanded task in recycling

#2000 series – Alloyed with copper
#5000 series – Alloyed with magnesium
#6000 series – Alloyed with magnesium and silicon
#7000 series – Alloyed with zinc
Summary

• A first step of using computational illumination as “physics-based classifier” for raw material classification

• Ongoing & future work
 – Large surface normal variation
 – Other (more global) appearance features
 – Discriminative coding in cameras, sensors, displays, etc.
The Role of Computational Imaging

<table>
<thead>
<tr>
<th>Controls</th>
<th>Signal Reconstruction</th>
<th>Detection/Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coded Aperture</td>
<td>Extended DOF</td>
<td>Optimal coded imaging systems for detection/recognition</td>
</tr>
<tr>
<td>Coded Exposure</td>
<td>High Speed Imaging</td>
<td></td>
</tr>
<tr>
<td>Coded Light</td>
<td>Spectral Imaging</td>
<td></td>
</tr>
<tr>
<td>Coded Sensor</td>
<td>Light Field Capture & Display</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>Image Relighting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRDF Acquisition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

• Gabrielle Gaustad from RIT Institute of Sustainability for discussion of recycling applications

• Oliver Cossairt, Mohit Gupta, and Shree Nayar from Columbia University and Toshihiro Kabayashi from Canon for discussion and comments

• Support from NYSP2I and RIT VPR

Thank You!
Discriminative Illumination:
Per-pixel Classification of Raw Materials based on Optimal Projections of Spectral BRDFs

Jinwei Gu and Chao Liu

Munsell Color Science Laboratory
Chester F. Carlson Center for Imaging Science
Rochester Institute of Technology
http://www.cis.rit.edu/jwgu
Both Color and BRDF are Useful
SNR Benefits: Simulation Results

- Based on the MERL BRDF database, with both photon noise and read noise.

![Graphs showing the effects of SNR benefits with different materials and noise levels.](Image)
Related Work

- Paint classification using BRDF slices [Wang et al. 2008]
- Optimal subset of illumination for steel classification [Jehle et al. 2010]
- Feature-specific imaging and task-specific imaging [Neifeld et al. 2003, 2007, etc.]

Raw Material Classification: What & Why?

- Material recognition based on appearance features (e.g., spectral reflectance, BRDF, translucency, polarization, texture, etc.)

Egg Candling

Sorting Scraps for Recycling