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Figure 1. Experimental setup to obtain the ground truth of camera
spectral sensitivity.

1. Experimental Setup to Measure the Ground
Truth of Camera Spectral Sensitivity

As shown in Fig. 1, we have measured the spectral sen-
sitivity functions for 28 cameras, including professional
DSLRs, point-and-shoot, industrial and mobile cameras
(i.e.Nokia N900), using a monochromator and a spec-
trometer PR655. At each wavelength, the camera spec-
tral sensitivity in RGB channels is calculated by c(λ) =
d(λ)/(r(λ) · t(λ)), where d is the raw data recorded by the
camera, r is the illuminant radiance measured by the spec-
trometer, and t is the exposure time of the camera. All
other settings (i.e., ISO and aperture) remained the same
during the measurement for each camera. The procedure is
repeated across the whole visible wavelength from 400 to
720nm with an interval of 10nm.

2. Recovery of Camera Spectral Sensitivity Us-
ing Other Basis Functions

To fully evaluate the recovery performance using eigen-
vectors extracted from camera spectral sensitivities, we
compared the recovery by using other basis functions. Zhao
et al. [2] tested three basis functions besides camera space
eigenvectors, and they are polynomial, Fourier, and radial
basis functions. Zhao et al. [2] concluded that radial basis
functions are the best.

The equation for the basis functions can be found
here [2]. However, for completeness, these equations are
listed in the paper. The equation for the Fourier basis func-
tion is expressed as

F =
D∑
i=0

ai · sin(iλπ), (1)

where λ is the wavelength vector normalized to be between
0 and 1. The Fourier basis functions are shown in Fig. 2(a).

The polynomial basis function is expressed as

F =

D∑
i=0

ai · λi, (2)

where λ is the wavelength vector from 400nm to 720nm
with an interval of 10nm. It is normalized to be between 0
and 1. The recovered spectral sensitivity, F is a linear com-
bination of λi. The polynomial basis functions are shown
in Fig. 2(b).

The radial basis functions are expressed as

F =

D∑
i=0

ai · exp(−
(λ− µi)

2

σ2
), (3)

where λ is the wavelength vector normalized to be between
0 and 1. µi and σ2 are the peak wavelength and the vari-
ance of each basis function. The radial functions are shown
in Fig. 3(a), (b) and (c) for the red, green, and blue chan-
nels. Eight basis functions are selected for the polynomial,
Fourier, and radial method [2].

3. Robustness of Spectral Sensitivity Recovery
to Daylight Variation

Judd [1] proposed that the daylight spectrum can be well
represented using only a few parameters. To fully evaluate
our recovery of camera spectral sensitivity under daylight,
we simulated radiance using daylight measured at different
time of the day, based on which the camera spectral sensitiv-
ity is recovered. The measured and recovered camera spec-
tral sensitivity was then compared and spectral RMS calcu-
lated. The mean RMS for all 28 cameras in the database
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(a) Radial basis (blue) (b) Radial basis (green) (c) Radial basis (red) 

Figure 3. The radial basis functions of the (a) red, (b) green, and (c) blue channel.

(a) Fourier basis 

(b) Polynomial basis 

Figure 2. The Fourier basis and polynomial basis functions.

is in Fig. 4. The recovery accuracy is about 0.06, almost
invariant to daylight at different time of the day.

4. Dimensionality of Spectral Sensitivity

While the camera spectral sensitivity is of high dimen-
sion (i.e.33 if the wavelength ranges from 400nm to 720nm

(a) Daylight measured at different time of the day 

(b) Recovery accuracy at different time of the day 

Figure 4. The spectral RMS error between the recovered and mea-
sured camera spectral sensitivity at different time of the day.

with an interval of 10nm), it can be represented using much
fewer parameters. The variance that can be explained given
the number of eigenvectors retained in the model is shown
in Fig. 5. With two eigenvectors, we found that the camera
spectral sensitivity can be well represented.



(a) Radiance error v.s. CCT (b) Recovered daylight spectrum
(c) Recovered camera spectral sensitivity 

with unknown daylight

Figure 6. The recovery of the camera spectral sensitivity of NikonD3 using a single picture of CCDC under unknown daylight. (a) The
radiance error given the estimated camera spectral sensitivity at a certain CCT. The daylight spectrum that yields the lowest radiance
difference is plotted in (b) and compared with the ground truth. (c) The measured and recovered camera spectral sensitivity of NikonD3.
The subscripts m and e stand for the measured and estimated camera spectral sensitivity.
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Figure 5. The percentage of total variance of the camera spectral
sensitivity explained given the number of eigenvectors retained in
the model. The first two eigenvectors are found to be enough to
represent the space of camera spectral sensitivity.

5. Results on Spectral Sensitivity Recovery

We recovered the camera spectral sensitivity of NikonD3
using a picture of CCDC under unknown daylight. The ra-
diance error given the CCT of daylight is in Fig. 6(a). The
daylight spectrum that yields the least radiance eror is se-
lected, and it is plotted in Fig. 6(b) with the measured day-
light spectrum. A close match can be found between our
recovered daylight and the ground truth. The recovered and
measured camera spectral sensitivity are shown in Fig. 6(c).
Similarly, the camera spectral sensitivity of a smartphone
camera, NokiaN900, and another DSLR, Canon5D Mark II
are recovered in Fig. ??.

6. Results on Computational Color Constancy
Accurate color corrections of images can be made by

knowing the camera spectral sensitivity. In order to recover
the correct color of a scene, camera raw data needs to be
converted to device-independent XYZ by Eq. (5) in the pa-
per, and then a chromatic adaptation transform (i.e.a linear
Bradford transform) is used to take care of the difference
in the white point. Computational color constancy relies on
the accurate estimation of T (by Eq. (5)) and the white point
of the scene. Knowing camera spectral sensitivity can help
estimate T correctly. Examples are shown in Fig. 8. The
color cast in the captured images in Fig. 8 is removed suc-
cessfully by knowing T estimated from the recovered cam-
era spectral sensitivity of Canon 5D MarkII. On the other
hand, the corrected images are less saturated by dividing
the white point (without knowing the T matrix).
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Figure 8. The correction of images by Canon5D Mark II by removing the color cast in the image. CC is put in the scene to locate the white
point. The estimated camera spectral sensitivity of Canon5D Mark II is used to calculate T by Eq. (5). Left column: The captured image;
Middle column: the corrected image based on T, and Right column: the corrected image by dividing the white point (without using T).
The images are rendered in sRGB color space.


