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Abstract
As a global feature of fingerprint, orientation field is very

important to automatic fingerprint identification system

(AFIS). Establishing an accurate and concise model for ori-

entation field will not only improve the performance of ori-

entation estimation, but also make it feasible to apply ori-

entation information into the matching process. In this pa-

per, such a novel model for orientation field of fingerprint

is proposed. We use a polynomial model to approximate the

orientation field globally and a point-charge model at each

singular point to improve the approximation locally. These

two models are combined together by a weight function. Ex-

perimental results are provided to illustrate this combina-

tion model is more accurate and robust to noise compared

with the previous works. Its applications are discussed at

the end.

1 Introduction
Among various biometric techniques, automatic fingerprint

identification system (AFIS) is most popular and reliable

for automatic personal identification. During the last years

its performance has reached a high level. However, it is still

not satisfying for a large database or fingerprints with poor-

quality [1].

Fingerprint is the pattern of ridges and valleys on the sur-

face of a fingertip. The ridges are black and the valleys are

white. Its orientation field is defined as the local orienta-

tion the ridge-valley structures. The minutiae are defined as

ridge endings and bifurcations. The singular points can be

viewed as points where the orientation field is discontinu-

ous, which can be classified into two types: core and delta.

Most classical AFIS algorithms [1, 2, 3, 4, 5] take the minu-

tiae and the singular points, including their coordinate and

direction, as the distinctive features to represent the finger-

print in the matching process. But obviously, this kind of

representation does not utilize all available features in the

fingerprints and therefore cannot provide enough informa-

tion for large-scale fingerprint identification tasks [6]. De-

velop a more complete representation for fingerprints will

surely result in much better performance.

As a global feature, orientation field describes one of the

basic structures of a fingerprint. Moreover, the variation of

orientation field is of low frequency so that it is robust to

various noises. It has been widely used for minutiae extrac-

tion and fingerprint classification, but rarely utilized into the

matching process. In this paper, we focus on the modeling

of orientation field. Our purpose is to represent orientation

field in a complete and concise form so that it can be accu-

rately reconstructed with several coefficients. This work’s

significance lies in the following three aspects: (1) It can

be used to improve the estimation of orientation field, espe-

cially for poor-quality fingerprints; therefore it will benefit

the extraction of minutiae. (2) More importantly, orienta-

tion field can be utilized for fingerprint matching after mod-

eling, thus a much better identification performance could

be expected. (3) It is possible to establish a complete rep-

resentation for the fingerprint by combining the orientation

model with some other information such as minutiae and

ridge density map [7].

Sherlock [8] had proposed a so-called zero-pole model

for orientation field based on singular points, which takes

core as zero and delta as pole in complex plane. The in-

fluence of a core zc, is 1
2arg(z − zc) for point z, and that

of a delta zd, is − 1
2arg(z − zd). The orientation at z, is

the sum of the influence of all cores and deltas. It is sim-

ple and effective, but lack of accuracy, because obviously

many fingerprints that have nearly the same singular points

yet differ in detail. Vizcaya [9] had made an improvement

using a piecewise linear approximation model around sin-

gular points to adjust the zero and pole’s behavior. First,

the neighborhood of each singular point is uniformly di-

vided into eight regions and the influence of the singular

point is assumed to change linearly in each region. An op-

timization implemented by gradient-descend is then carried

on to get piecewise linear function. It is more adaptable

to real fingerprint indeed, but not quite smooth. For poor-

quality fingerprint, the gradient-descend optimization is not

always convergent. Furthermore, these two models cannot

deal with fingerprint which contains no singular point, such

as plain arch classified by Henry [8, 10]. Since they do not

consider the distance from singular points, the influence of

a singular point is the same to any point on the same cen-

tral line, either near or far from the singular point. This will

cause serious error in the modeling of the regions far from

singular points.

Here we propose a combination model for orientation

matrix. Since orientation of fingerprint is quite smooth and
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continuous except at singular points, we apply a polynomial

model to approximate the global orientation field. At each

singular point, a point-charge model similar with zero-pole

model is used to describe the local region. Then, these two

models are combined smoothly together through a weight

function. Features of the combination model are as below:

(1) It can accurately represent orientation field at regions

whether near or far from singular points. (2) Global approx-

imation makes it robust against noise. (3) It has a concise

representation, which guarantees a low storage cost for its

application into fingerprint identification.

2 The Model of Orientation Field
As the value of fingerprints’ orientation is often defined on

[0, π), it seems that this representation has an intrinsic dis-

continuity. So it is unsuitable to model the orientation field

directly. A solution is mapping the orientation field to a

continuous complex plane[11][12]. Denote {θ(x, y)} as the

orientation field. The mapping is defined as:

U = R + iI = cos(2θ) + i sin(2θ) (1)

where R and I denote the real part and image part of the

unit-length complex, U , respectively. Obviously, R(x, y)
and I(x, y) are continuous with x, y in those regions. The

above mapping is a one-to-one transformation and θ(x, y)
can be easily reconstructed.

Now, we can equivalently model the orientation field in

two ways: one is to model U(x, y) in complex domain; the

other is to model R(x, y) and I(x, y) respectively in real

domain. The latter is employed in this paper and the former

one will be touched in our further research. Specially, a bi-

variate polynomial model is chosen for R(x, y) and I(x, y)
(denoted by PR, PI) respectively, which can be formulated

as:

(
1 x · · · xn

)



p00 p01 · · · p0n

p10 p11 · · · p1n

...
...

. . .
...

pn0 pn1 · · · pnn






1
y
...

yn




where the order n can be determined ahead.

Near the singular points, it is difficult to be modeled

with polynomial functions. A model named Point-Charge is

added at each singular point. Compared with the model pro-

vided in [8], Point-Charge uses different quantity of elec-

tricity to describe the neighborhood of each singular point,

instead of same influence at all singular points. And for

a certain singular point, its influence at point (x, y) varies

with the distance between the point and the singular point.

The influence of a standard (vertical) core at point (x, y) ,

is defined as:

PCcore = (H1,H2) =
{ (

y−y0
r , x−x0

r

)
Q r ≤ R

(0, 0) r > R
(2)

where (x0, y0) is this core’s position, Q is the quantity of

electricity, R denotes the radius of its effective region, and

r =
√

(x − x0)2 + (y − y0)2. And that of a standard delta

is:

PCdelta = (H1,H2) =
{ (

y−y0
r ,−x−x0

r

)
Q r ≤ R

(0, 0) r > R
(3)

In real fingerprint, the ridge pattern near the singular points

usually has a rotation angle compared with the standard

one. If the rotation angle from standard position is φ(φ ∈
(−π, π]), a transformation can be made as:(

x′

y′

)
=
(

x0

y0

)
+
(

cos φ sinφ
− sin φ cos φ

)(
x − x0

y − y0

)
(4)

Then, the Point-Charge model can be modified by taking x′

and y′ instead of x and y, for cores in (2) and deltas in (3),

respectively.

To combine the polynomial model (PR,PI) with Point-

Charge smoothly, a weight function is defined. For Point-

Charge, its weight at (x, y) is defined as:

α
(k)
PC(x, y) = 1 − r(k)(x, y)

R(k)
(5)

where (x(k)
0 , y

(k)
0 ) is the coordinate of the k-th singular

point, R(k) is its effective radius, and r(k)(x, y) is set as

min
(√

(x − x
(k)
0 )2 + (y − y

(k)
0 )2, R(k)

)
.

For polynomial model, its weight at (x, y) is:

αPM (x, y) = max

(
1 −

K∑
k=1

α
(k)
PC , 0

)
(6)

where K is the number of singular points. The weight func-

tion guarantees that for each point, its orientation follows

the polynomial model if it is far from the singular points

and follows the Point-Charge if it is near one of the singular

points.

Finally, the combination model for the whole finger-

print’s orientation field can be formulated as:

(
R(x, y)
I(x, y)

)
= αPM ·

(
PR

PI

)
+

K∑
k=1

α
(k)
PC ·

(
H

(k)
1

H
(k)
2

)
(7)

3 Implementation Scheme
3.1 Original Orientation Field Computation
There are essentially two ways to compute the orientation

field of fingerprint: filter-bank based approaches [15] and

gradient-based approaches [4, 13, 14]. The filter-bank based

approaches are more resistant to noise than the latter, but it
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is discrete valued (depending on the number of filters) and

computationally expensive. So we adopt the latter one [13]

to compute the original orientation field O . The coher-

ence denoted by W , or reliability of O can also be obtained

along with it.

We also need to acquire the position and type of singular

points. Many approaches have been proposed for singular

point extraction. Most of them are based on Poincare index

[3, 4, 14, 15]. In this paper, we first detect the singular

points by Poincare index; then an optimization on a local

5 × 5 window is carried on to get the precise position.

3.2 Polynomial Approximation
Given order n , the polynomial model is first formulated

into a linear model by taking each factor xiyj as an inde-

pendent variable. Then, weighted least squares (WLS) is

applied here to implement the approximation. The reliabil-

ity, W (x, y), is used as the weight factor at point (x, y).
The reason we use weight factor here is that this method

can efficiently decrease the influence of inaccurate orienta-

tion estimation. As pointed above, the reliability W (x, y)
can indicate how well the orientation is fit for the real ridge.

The more the reliability W (x, y) is, the more influence the

point should have.

From experiments, we find that 4-order(n = 4) polyno-

mial is enough for global approximation.

3.3 Point-Charge Model at Singular Point
Point-Charge Models at singular points are obtained in two

steps. First, two parameters are estimated for each singu-

lar point: φ-the rotation angle and R-the effective radius.

Second, charges of singular points are estimated by opti-

mization.

As φ describes the average orientation of the ridge pat-

tern around the singular points, we set its value as the poly-

nomial model’s output at the singular points. Note that

φ ∈ (−π, π]. For cores, we need to tell whether it is up-

ward or downward. This is trivial in fact. We solve this

problem by matching the core with an upward core and a

downward core template, which are generated from stan-

dard Point-Charge Model. Therefore, for the singular point

at (x0, y0), its rotation angle φ is estimated as:

Delta and Upward Core:

φ(x0, y0) =

{
π
2 − α α = 1

2 tan−1 PI(x0,y0)
PR(x0,y0)

≥ 0
−π

2 − α otherwise

(8)

Downward Core:

φdownward(x0, y0) = φupward(x0, y0) + π (9)

For the convenience of computation, we use a same R for

each singular point. The value can be determined empiri-

cally.

After that, we need to estimate the charges for singu-

lar points. Since our primitive purpose is to minimize the

approximate error, the objective function for the singular

points can be represented as:

minJ =
∑
Ω

[
(R(x, y) − cos 2O)2 + (I(x, y) − sin 2O)2

]

where O is the original orientation field and Ω is the effec-

tive region for the point-charge model. For each singular

point, its effective region is a small circle with radius R. Ω
is the union set of all these small circles. The variables in

the above optimization problem are the charges of singu-

lar points, {Q1, Q2, · · · , QK}. They can be computed by

solving the following equations as:

∂J/∂Qk = 0, k = 1, 2, · · · ,K (10)

4 Experimental Results
The experiment is carried on two sets of fingerprints. The

first set (Set 1) contains 60 fingerprint images captured with

a live-scanner, whose size is 512× 320(pixels). The second

set (Set 2) is a sample database from NIST Special Database

14 [16] that contains 40 fingerprint images. The images’

size is 480× 512(pixels). The fingerprints in these two sets

vary in different qualities and types.

Three orientation models are evaluated on the database:

zero-pole model [8], piecewise linear model [9] and our

combination model. All of them use the same algorithm for

singular points extraction and orientation estimation. The

combination model employs 4-order polynomial. As men-

tioned above, the orientation field extracted by Gabor filter-

bank (when the number of filters is large enough) is more

reliable than the original one based on gradient computing.

So, the approximation error of a fingerprint is defined as

mean absolute error (MAE) on all points between the ori-

entation field reconstructed by the model and the orienta-

tion field extracted by Gabor filter-bank [15] (64-filters).

Then, by averaging the total approximation error on all fin-

gerprints in the database, the error of each model can be

gained along with its standard deviation. The results sum-

marized in Table 1 shows that our combination model leads

to a notable reduction both in the mean error and the stan-

dard deviation than the other two models.

From observation, it can also be concluded that our com-

bination model has a satisfying performance, which is much

better than the other two models. Some results of our com-

bination model are presented in Fig.1. Among them there

are various fingerprint types: loop, whorl, and plain arch

without singular point (the other two models can not deal

with plain arch fingerprints). The reconstructed orientation

matrices are shown as unit vectors upon the original fin-

gerprint. As shown, the result is rather accurate and ro-
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bust to noise. Fig.2 gives another example for compar-

ison, where (a) is the original fingerprint (a poor-quality

loop), (b)(c)(d) are the reconstructed orientation fields, re-

spectively by zero-pole, piecewise linear and our combina-

tion model. Result shows that: Zero-pole can only roughly

describe the real orientation without accuracy. Piecewise

linear model does better near the singular points, but it fails

in the place far from them, such as in the left and the right

bottom part in Fig.2(c). Moreover, it is not very smooth.

Instead, the combination model can describe the orienta-

tion of the whole fingerprint image smoothly and precisely,

whether the region is near or far from the singular points. It

also works well against noise.

Assuming n-order polynomial is applied for a certain fin-

gerprint with 4 singular points (i.e. 2 cores and 2 deltas),

the total number of coefficients (which need to be saved) is

2(n+1)2 +4(2 matrices PR,PI , and 4 charges for model-

ing singular points). As n is chosen as 4 and implemented

with Matlab6.1 and C on Pentium III 500Hz PC, it costs

about 1.5 seconds for modeling and 100 bytes for storage

on average, which is quite suitable for real application.

5 Conclusion and Discussion

To sum up, a combination model for orientation field of fin-

gerprints is proposed in this paper. Results show this model

is more accurate and reliable than the previous work. More-

over, it can deal with fingerprint without singular points. It

can also be implemented efficiently and suitable for on-line

processing.

Our further work will lie in two aspects. First, our com-

bination model deals with the smoothly continuous ridge

pattern and singular points separately, and then combines

them together. As we mentioned above, modeling U in

complex domain is an alternative way where we can take

core as zero and delta as pole. A rational function in com-

plex domain may be employed for U , which will be more

universal and concise.

Another aspect of further work is the application of this

model. First, as pointed previously, minutiae points, orien-

tation map and ridge density map can completely describe

a fingerprint image. We can use the orientation model to

compress, restore or synthesize the fingerprint images. Sec-

ondly, it is possible to develop new method for fingerprint

identification based on the ridge orientation model, in which

the coefficients of orientation model can be used for finger-

print matching.
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Table 1. Mean orientation error of three models(°)

Zero- Piecewise Combination

Pole Linear Model

Mean 14.32 10.64 5.58

Standard Deviation 5.47 4.15 2.42
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Figure 1. Reconstructed orientation field using our combination model. (a) and (b) are from Set 2,
in which (a) is a loop and (b) is a whorl; (c), (d) and (e) are from Set 1, in which (c) is a plain arch
without singular point, (d) is a loop, and (e) is a whorl. In contrast, zero-pole model and piecewise
linear model cannot deal with the plain arch as in (c).
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Figure 2. Reconstructed orientation of a poor-quality loop from Set 2 by three models: (a) Original
fingerprint, (b) zero-pole, (c) piecewise linear model, and (d) the combination model. Zero-pole
roughly describes the orientation. Piecewise linear model fails in the places far from the singular
points, such as the left and the right bottom part in (c) compared with (d).
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