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Abstract Fingerprint recognition is very important in automatic personal 
identification. In conventional fingerprint recognition algorithms, 
fingerprints are represented graphically with a simple set of minutiae and 
singular points, but the information in this kind of representation is not 
adequate for large-scale applications or where fingerprint quality is poor. A 
complete and compact representation of fingerprints is thus highly desirable. 
In this chapter, we focus on research issues in the graphical representation of 
fingerprints. We first introduce minutiae-based representation and provide 
some models for the graphical representation of orientation fields. Latterly, 
we deal with the generation of synthetic fingerprint images and conclude 
with a discussion of how to establish a complete fingerprint representation.  
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14.1. Introduction 
In recent years, fingerprint identification has received increasing attention. 

Among the various biometric techniques used for automatic personal identification, 
automatic fingerprint identification systems are the most popular and reliable. 
Nonetheless, while the performance of fingerprint identification systems has 
reached a high level,  they is still not satisfactory when applied to large databases 
or to poor-quality fingerprints [1,2].  
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A fingerprint is the pattern of ridges and valleys on the surface of a fingertip. 
Figure 14.1 (a) depicts a fingerprint in which the ridges are black and the valleys 
are white. Its orientation field, defined as the local orientation of the ridge-valley 
structures, is shown in Figure 14.1 (b). The minutiae, ridge endings and 
bifurcations, and the singular points are also shown in Figure 14.1 (a). Singular 
points can be viewed as points where the orientation field is discontinuous. They 
can be classified into two types: a core, the point of the innermost curving ridges, 
and a delta,  the center of triangular regions where three different directional flows 
meet. Fingerprints are usually partitioned into six main classes according to their 
macro-singularities, i.e., arch, tented arch, left loop, right loop, twin loop and 
whorl (see Figure 14.2). Fingerprints can be represented by a large number of 
features, including the overall ridge flow pattern (i.e. orientation field), ridge 
frequency (i.e. density map), location and position of singular points, and the type, 
direction and location of minutiae points. All of these features contribute to 
fingerprint individuality.  

 

     

(a)                                                     (b) 

Figure 14.1. Example of a fingerprint: (a) singular points and minutiae with its 
direction, (b) orientation field shown with unit vector. 

The performance of a fingerprint identification system depends mainly  on the 
kind of fingerprint representation it utilizes. Most classical fingerprint recognition 
algorithms [1,2,3] represent the fingerprint using the minutiae and the singular 
points, including their coordinates and direction, as the distinctive features. That 
means fingerprints are first graphically represented with a set of minutiae and 
singular points are then  compared with the template set. If the matching score 
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exceeds a predefined threshold, two fingerprints can be regarded as belonging to 
the same finger.  

Obviously this kind of representation does not make use of every feature that is 
available in fingerprints and therefore cannot provide enough information for 
large-scale fingerprint identification tasks [4]. Certainly,  a better representation 
for fingerprints is needed.  

In this chapter, we mainly address the topic of graphical representation of 
fingerprints. First we introduce the conventional representation of fingerprints, the 
minutiae-based representation. We then establish a complete representation with a 
compact form in which much more information other than minutiae features (such 
as the orientation field) can be taken into account.  

The remainder of the chapter is organized as follows. Section 14.2 introduces 
the minutiae-based representation of fingerprints. Section 14.3 provides four 
models of fingerprint orientation fields. Section 14.4 describes how to synthesize 
the fingerprint images utilizing the orientation field models. Section 14.5 discusses 
ways to establish a complete and compact  fingerprint representation. The last 
section draws some conclusions. 

      

(a)                                              (b)                                             (c) 

  
(d)                                              (e)                                             (f) 

Figure 14.2. One fingerprint for each of six main classes: (a) arch, (b) tented arch, (c) 
left loop, (d) right loop, (e) whorl, and (f) twin loop. 
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14.2. Minutiae-based Representation Fingerprint 
Most conventional fingerprint recognition algorithms are based on a minutiae-

based representation, which has a rather low storage cost. A reliable minutiae 
extraction method mainly includes the following steps: orientation field estimation, 
ridge extraction or enhancement, ridge thinning and minutiae extraction. Figure 
14.3 provides a flowchart of conventional minutiae extraction and minutiae 
matching algorithms.  

 

     

Figure 14.3.   Flowchart of minutiae extraction and matching. 

By quantifying the amount of information available in minutiae-based 
representation, a correspondence can be established between two fingerprints, yet 
between the minutiae-based representations of two arbitrarily chosen fingerprints 
belonging to different fingers it is also possible to establish a false correspondence. 
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For example, the probability that a fingerprint with 36 minutiae points will share 
12 minutiae points with another arbitrarily chosen fingerprint with 36 minutiae 
points is 6.10  [3]. Figure 14.4 provides an example of such a false 
correspondence. Because of noise in the sensed fingerprint images, errors in 
locating minutiae, and the fragility of the matching algorithms, the observed 
matching performance of the state-in-the-art fingerprint recognition systems is 
several orders of magnitude lower than their theoretical performance. Because 
minutiae-based representations use only a part of the discriminatory information 
present in fingerprints, it may be desirable for the purposes of automatic matching 
to explore additional complementary fingerprint representations. Taking Figure 
14.4 as an example, the orientation fields of these two fingerprints are clearly 
different in some places, such as at the bottom of the fingerprints and the left-
down part from the core. Including orientation information in the matching step 
would greatly reduce opportunities for this kind of false match. 

810−×

 

     

Figure 14.4.  A false match between two different fingerprints: 64 minutiae are 
detected in the left image, 65 in the right image, with 25 “false” correspondences [3]. 

14.3. Modeling Orientation Fields 
As a global feature, an orientation field describes one of the basic structures of 

a fingerprint and is thus quite important in the modelling and representation of the 
entire fingerprint. Orientation field variation is low frequency so it is robust with 
respect to various noises. It has been widely used for minutiae extraction and 
fingerprint classification. In this section, we focus on the modelling of the 
orientation field. Our purpose is to represent the orientation field in a complete and 
compact form so that it can be accurately reconstructed with several coefficients. 
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This work is significant in three ways. (1) It can be used to improve the estimation 
of orientation field, especially when  fingerprint quality is poor; therefore it will be 
of benefit in the extraction of minutiae for conventional fingerprint identification 
algorithms. (2) The coefficients of the orientation field model can be saved for use 
in the matching step. As a result, information on the orientation field can be 
utilized for fingerprint identification. By combining it with the minutiae 
information, we can expect a much better identification performance. (3) We can 
synthesize the fingerprint by using information on the orientation field, minutiae 
and the density between the ridges. This makes it possible to establish a complete 
representation for the fingerprint by combining the orientation model with other 
information. 

 
1. Zero-Pole Model 

Sherlock and Monro [5] proposed a so-called zero-pole model for the 
orientation field based on singular points, which takes the core as zero and the 

delta as a pole in the complex plane. The influence of a core, , is cz
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where  and  are the i-th core and j-th delta. Figure 14.5 depicts the influence 
of a core and delta. They can roughly describe the structure near these singular 
points.  
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dz

 
2. Piecewise Linear Approximation Model 

Vizcaya and GerHardt [6] had made an improvement using a piecewise linear 
approximation model around singular points to adjust the behaviour of the zero 
and pole. First, the neighbourhood of each singular point is uniformly divided into 
eight regions and the influence of the singular point is assumed to change linearly 
in each region. An optimization implemented by gradient-descend is then 
performed to get a piecewise linear function.  

These two models, the zero-pole model and the piecewise linear model, cannot 
deal with fingerprints belonging to the plain arch class (i.e. without singular 
points). Furthermore, they do not take into account the distance from singular 
points, but as the influence of a singular point is the same as any point on the same 
central line, whether near or far from the singular point, serious errors arise in the 
modelling of those regions that are far from singular points. As a result, these two 
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models cannot be used to accurately approximate a real fingerprint’s orientation 
field. 

    

Figure 14.5.   Illustration of zero-pole model. 

3. Rational Complex Model [7] 
Denote the image plane as a complex space, C. For any , the value of a 

fingerprint orientation, 
Cz ∈

)(zθ , is defined within ),0[ π , so it can be regarded as 

half the argument of a complex number, i.e. )(arg
2
1)( zUz =θ . As we know, 

the orientation pattern of a fingerprint is quite smooth and continuous except at the 
singular points (including cores and deltas), so a rational complex function may be 
utilized here to represent the function, , in which the known cores and deltas 
act as zeros of the numerator and the denominator, respectively. Thus, the model 
for the orientation field can be defined as 
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are the cores and deltas of the fingerprint in the known region. The zeros of  
and  should be outside the known region. Actually, these zeros are always 
sparsely located on real fingerprints. All the zeros of , ,  and 

 define the nature of the model. 
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Obviously, the zero-pole model proposed in [5] can be seen as a special 
example of the rational complex model, where  and  are both set to a 
constant, such as 1. It also should be noted that our model is suitable for all types 
of fingerprints, even for “plain arch” fingerprints, which do not have singular 
points. 

)(zf )(zg

How to compute the coefficients of the model? From the mathematical theorem 
of complex variables, we know that a rational function can be approximated using 
a polynomial function in a closed region. So, to simplify the computation of the 
rational complex model, the model can be written as 

]
)(
)()(arg[

2
1)(

zQ
zPzfz ⋅=φ .                                 (14.3) 

We want to find a function, , to minimize the difference between {)(zf )(zφ } 

and the original orientation field, { )(zθ }. Denote ]
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2
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2
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minimizing the difference between {

)(zf

)(zω } and { )()( zz ψθ − }. 
It is unsuitable for us to directly compute this minimum. A solution to this 

problem is to map the orientation field to a continuous complex function by using 
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Then, instead of computing the minimal difference between { )(zω } and 
{ )()( zz ψθ − }, we compute the function, , by minimizing )(zf

∑ −
z

zUzf 2)()( . Since )(zθ ,  and  (corresponding to the 

original orientation field, cores and deltas) are known when we deal with a 
fingerprint image, it is easy to solve this problem by using Least Square Error 
principle. 

)(zP )(zQ

When we choose  from the set of polynomials of an order less than n, 
only n+1 parameters need to be computed and saved (many fewer than the model 
in [6]). In the experiments, n is usually set as 6. Due to the global approximation, 
the rational complex model has a robust performance against noise. 

)(zf

An experiment was carried out on more than 100 inked fingerprints and live-
scanned fingerprints. These fingerprints were of different types: loop, whorl, twin 
loop, and plain arch without singular points. They also varied in different qualities. 
Three orientation models are evaluated on the database, zero-pole model, 
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piecewise linear model and rational complex model All of them used the same 
algorithm for singular points extraction and orientation estimation algorithms. On 
all these fingerprint images, the performance of the rational complex model was 
quite satisfying. The average approximation error of the rational complex model 
was about 6 degrees, which is much better than using the other two models 
(respectively 14 degrees and 11 degrees). This shows that the rational complex 
model’s more effectively than the previous models. 

Figure 14.6 provides an example for comparison, where (a) is the original 
fingerprint, and (b), (c), and (d) are the reconstructed orientation fields, 
respectively using the zero-pole, piecewise linear, and rational complex models. 
The reconstructed orientation field is shown as unit vectors upon the original 
fingerprint. As shown, the zero-pole model and piecewise linear model perform 
badly far from the singular points, easily observable in the top-left and the top-
right part in (c) and (d). In contrast, the rational complex model describes the 
orientation of the whole fingerprint image precisely. 

 

  

(a)                                      (b) 

  

                              (c)                              (d)  
Figure 14.6. Comparative result of the orientation field constructed by using three 
models: (a) original fingerprint image, (b) zero-pole model, (c) piecewise linear model, and 
(d) rational complex model. 
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4. Combination Model [8] 
Since the orientation of fingerprints is quite smooth and continuous except at 

singular points, a polynomial model can be applied to approximate the global 
orientation field. At each singular point, the local region is described using a point-
charge model similar to the zero-pole model. Then, these two models are smoothly 
combined  through a weight function. 

Since the value of the orientation of a fingerprint is defined within [0, π ], it 
seems that this representation has an intrinsic discontinuity. (In fact, the 
orientation 0 is the same as the orientation π in a ridge pattern). As a result, we 
cannot model the orientation field directly. A solution to this problem is to map the 
orientation field to a continuous complex function. Define θ (x,y) and U(x,y) as 
respectively the orientation field and the transformed function. The mapping can 
be defined as 

θθ 2sin2cos iiIRU +=+=                         (14.4) 

where R and I denote respectively the real and the imaginary parts of the complex 
function, U(x,y). Obviously, R(x,y) and I(x,y) are continuous with x, y in those 
regions. The above mapping is a one-to-one transformation and θ (x,y) can be 
easily reconstructed from the values of R(x,y) and I(x,y). 

To globally represent R(x,y) and I(x,y), two bivariate polynomial models are 
established, which are denoted by PR, PI respectively. These two polynomials can 
be formulated as: 

( ) ( Tnn yyPxxyxPR LL 11),( 1 ⋅⋅= )

)

,           (14.5) 

and 

( ) ( Tnn yyPxxyxPI LL 11),( 2 ⋅⋅= ,            (14.6) 

where n is the polynomials’ order and the matrixes, , . nn
iP ×ℜ∈ 2,1=∀i

Near the singular points, the orientation is no longer smooth, so it is difficult to 
model with a polynomial function. A model named ‘Point-Charge’ (PC) is added 
at each singular point. Compared with the zero-pole model, Point-Charge uses 
different quantities of electricity to describe the neighbourhood of each singular 
point instead of the same influence at all singular points, while the influence of a 
certain singular point at the point, (x,y), varies with the distance between the point 
and the singular point. The influence of a standard (vertical) core at the point, (x,y), 
is defined as 
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where  is this core’s position, Q is the quantity of electricity, R denotes 
the radius of its effective region, and 
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In a real fingerprint, the ridge pattern at the singular points may have a rotation 
angle compared with the standard one. If the rotation angle from standard position 
is φ  ( ],( ππφ −∈ ), a transformation can be made as: 

0 0
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Then, the Point-Charge model can be modified by taking x’ and y’ instead of x 
and y, for cores in Eq. (14.7) and deltas in Eq. (14.8), respectively. 

To combine the polynomial model (PR, PI) with Point-Charge smoothly, a 
weight function can be used. For Point-Charge, the weighting factor at the point 
(x,y) is defined as: 
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where  is the coordinate of the k-th singular point,  is the radius 
of the effective region, and  is set as 
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where K is the number of singular points. The weight function guarantees that for 
each point, its orientation follows the polynomial model if it is far from the 
singular points and follows the Point-Charge if it is near one of the singular points. 

Then, the combination model for the whole fingerprint’s orientation field can be 
formulated as: 
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with the constraint of 

1),(),( 22 =+ yxIyxR ,                                      (14.13) 

where PR and PI are respectively the real and the imaginary parts of the 
polynomial model, and  and  are respectively the real and the 
imaginary parts of the Point-Charge model for the k-th singular point. Obviously, 
the combination model is continuous with x and y. The coefficient matrices of the 
two polynomials, PR and PI, and the electrical qualities, , of the 
singular points will define the combination model. 
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Obviously, the combination model can be regarded as a generalized method of 
the other three models introduced above, so it can represent the orientation field 
more accurately. It does, however, have more parameters than the zero-pole and 
rational complex models, and this will produce some limitations when it is utilized 
in synthetic fingerprint generation. 

To compute its parameters, the coarse orientation field and singular points need 
to be estimated from the original fingerprint image. After that, two bivariate 
polynomials can be computed using the Weighted Least Square (WLS) algorithm. 
The coefficients of the polynomial are obtained by minimizing the weighted 
square error between the polynomial and the values of R(x,y) and I(x,y) computed 
from the real fingerprint. As pointed out above, the reliability, W(x,y), can indicate 
how well the orientation fits the real ridge. The higher the reliability W(x,y), the 
more influence the point should have. Then W(x,y) can be used as the weighting 
factor at the point (x,y).  

After the computation of polynomials, the coefficients of the Point-Charge 
Model at singular points can be obtained in two steps. First, two parameters are 
estimated for each singular point: the rotation angle, φ , and the effective radius, 
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R (which can also be chosen in advance). Second, charges of singular points are 
estimated by optimization. 

As we know, a higher order polynomial can provide a better approximation, but 
at the same time it will result in a much higher cost of storage and computation. 
Moreover, a high order polynomial will be ill- behaved in numerical 
approximation. As to a lower order polynomial, however, it will yield lower 
approximation accuracy in those regions with high curvature. As a trade-off, 4-
order (n=4) polynomials can be chosen for the global approximation. The 
experimental results showed that they performed well enough for almost all real 
fingerprints, while the cost for storage and computation remained low. In Figure 
14.7, some of the results are presented, in which the reconstructed orientation 
fields are shown as unit vectors upon the original fingerprint. As shown, the results 
are rather accurate and robust for these fingerprints, although there is a lot of noise 
in these images. 

The combination model has many more parameters than the zero-pole and 
rational complex models, making it, in comparison with those two models, much 
more difficult to use in synthesizing fingerprint images  
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Figure 14.7.  Some examples of approximation results for the combination model. 

14.4. Generation of Synthetic Fingerprint Images 
The main topic of this section is the generation of synthetic fingerprint images. 

Such images can not only be used to create, at zero cost, large databases of 
fingerprints, thus allowing recognition algorithms to be simply tested and 
optimized, they would help us to better understand the rules that underpin the 
biological process involved in the genesis of fingerprints. The effective modelling 
of fingerprint patterns could also contribute to the development of very useful 
tools for the inverse task, i.e. fingerprint feature extraction. 
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The generation method sequentially performs the following steps [9]: (1) 
orientation field generation, (2) density map generation, (3) ridge pattern 
generation and (4) noising and rendering.  

Orientation field generation: There are three ways to generate the orientation 
field for synthetic fingerprints. 1) Using the zero-pole model in [6], a consistent 
orientation field can be calculated from the predefined position of the cores and 
deltas alone, (see Figure 14.5) but the generated orientation is less accurate than 
real fingerprints. 2) The rational complex model in [7] produces a more lifelike 
result. From Eq. (14.2), we know that the rational complex model is determined by 
the zeros of f(z), g(z), P(z) and Q(z), in which the zeros of P(z) are cores and those 
of Q(z) are deltas. The position of cores and deltas can be predefined according to 
the fingerprint’s class, then, several points are randomly and sparsely selected 
from outside the print region as the zeros of f(z) and g(z). 3) We can first choose 
several real fingerprints and compute the parameters of the rational complex 
model by minimizing the approximation error between the model and the 
fingerprint image’ orientation [7]. Then these parameters can be changed a little 
randomly to produce different orientation fields.  

Density map generation [9]: This step creates a density map on the basis of 
some heuristic criteria inferred from the visual inspection of several real 
fingerprints. The visual inspection of several fingerprint images, leads us to 
immediately discard the possibility of generating the density map in a completely 
random way. In fact, we noted that usually in the region above the northernmost 
core and in the region below the southernmost delta the ridge-line density is lower 
than in the rest of the fingerprint. So, the density-map can be generated as follows: 
1) randomly select a feasible overall background density; 2) slightly increase the 
density in the above-described regions according to the singularity locations; 3) 
randomly perturb the density map and performs a local smoothing. 

Ridge pattern generation [9]: In this step, the ridgeline pattern and the minutiae 
are created through a space-variant linear filtering; the output is a very clear near-
binary fingerprint image. Given an orientation field and a density map as input, a 
deterministic generation of a ridgeline pattern, including consistent minutiae is not 
an easy task. One could try a priori to fix the number, type and location of the 
minutiae, and by means of an explicit model, generate the gray-scale fingerprint 
image starting from the minutiae neighbourhoods and expanding to connect 
different regions until the whole image is covered. Such a constructive approach 
requires several complex rules and tricks to be implemented in order to deal with 
the complexity of fingerprint ridgeline patterns. A more “elegant” approach could 
be based on the use of a syntactic approach that generates fingerprints according to 
some starting symbols and a set of production rules. The method here proposed is 
very simple, but at the same time surprisingly powerful: by iteratively enhancing 
an initial image (containing one or more isolated spikes) through Gabor-like filters 
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adjusted according to the local orientation and density, a consistent and very 
realistic ridge-line pattern “magically” appears; in particular, fingerprint minutiae 
of different types (terminations, bifurcations, islands, dots, etc.) are automatically 
generated at random positions. Formally, the filter is obtained as the product of a 
Gaussian by a cosine plane wave. A correction term is included to make the filter 
DC free: 

])vk[cos(1)v( 2
k

2
v

2

2

2

2
⋅
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−⋅=

σ
σ

σ
eef ,                         (14.14) 

where σ  is the variance of the Gaussian and k is the wave vector of the plane 
wave. The parameters σ and k are adjusted using local ridge orientation and 
density. Let z be appoint of the image where the filters have to be applied, then the 
vector  is determined by the solution of the two equations: T]k,k[k yx=

2
12

y
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x )kk((z) +=D   and  
y

x

k
k(z)tan( −=O .            (14.15) 

The parameterσ , which determines the bandwidth of the filter, is adjusted in 
the time domain according to D(z) so that the filter does not contain more than 
three effective peaks. The filter is then clipped to get a FIR filter. The filter should 
be designed with the constraint that the maximum possible response is larger than 
1.When such a filter is applied repeatedly, the dynamic range of the output 
increases and becomes numerically unstable, but the generation algorithm exploits 
this fact. When the output values are clipped to fit into a constant range, it is 
possible to obtain a near-binary image. The above filter equation satisfies this 
requirement without any normalization. 

In Figure 14.8, an example of the iterative ridgeline generation process is 
shown. 

Noising and rendering [9]: In this step, some specific noise is added and a 
realistic gray-scale representation of the fingerprint is produced. During 
fingerprint acquisition several factors contribute to the deterioration of the original 
signal, thus producing a gray-scale noisy image: 1) irregularity of the ridge and 
differences in their contact with the sensor surface; 2) the presence of small pores 
within the ridges; 3) the presence of very-small-prominence ridges; 4) gaps and 
cluttering noise due to non-uniform pressure of the finger against the sensor or due 
to excessively wet or dry fingers. So, the noising and rendering approach 
sequentially performs the following steps: 1) isolate the valley white pixels into a 
separate layer by copying the pixels brighter than a fixed threshold to a temporary 
image; 2) add noise in the form of small white blobs of variable size and shape; 3) 
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smooth the image; 4) superimpose the valley layer to the image obtained. In the 
above steps, steps 1 and 4 are necessary to avoid an excessive overall image 
smoothing. 

 

   

   
   Figure 14.8. An example to illustrate the image-generation process. 

14.5. Complete Representation of Fingerprints 
Synthesizing a fingerprint using an orientation field and a density map means 

the orientation field and density map will constitute a complete fingerprint 
representation. The minutiae primarily originate from the ridgeline disparity 
produced by local convergence/divergence of the orientation field and by density 
changes. As stated above, a complete representation of fingerprints will help us to 
choose an appropriate feature set for the matching. From this it would seem that 
these two features, an orientation field and a density map, are all enough for the 
purpose of fingerprint matching. Unfortunately this is not so. 

We tested this with two experiments. In one we constructed a fingerprint from 
the original fingerprint image using the synthesis method. In the other we 
compared two synthetic fingerprints using different starting points.  
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In the first experiment, the orientation field and density map should be 
computed from the original fingerprint image. Many algorithms have been 
proposed for the computation of the orientation field of a real fingerprint image. 
Of these, we prefer the algorithm proposed in [10]. To compute the density map, 
we first take some steps similar to the ridge detection method used in [4], then use 
a median filter to remove the noise. After that, it is a simple matter to choose a 
threshold to segment the ridges adaptively. Along the direction normal to the local 
ridge orientation, the width of the ridge at this position can be measured. After all 
pixels are processed, the density map of the fingerprint image has been obtained. 
After obtaining the orientation field and density map, the method described in last 
section is taken to produce a new image. Unfortunately, the experimental results 
are not satisfactory and the reconstructed image is not similar to the original. 
Another experiment is conducted using  different starting points and comparing 
the synthetic fingerprints. The result shows that starting from different points will 
result in evident changes in the final synthetic image. One example is provided in 
Figure 14.9.  

   

(a)                                         (b)                                       (c) 

Figure 14.9.   An example of reconstruction: (a) a real fingerprint image, (b) and (c) are two 
reconstructed images, in which the circles denote the starting points and the star symbols 
denote the minutiae points. The iterative times is 25. 

These experiments are not conclusive but they do raise some questions and issues: 
(1) The proposed synthesis algorithm is an iterative method but is  the iterative 
process convergent? If convergent, is the converged image the same as the original 
noise-affected fingerprint? (2) From the point of view of numerical analysis, the 
computational error will greatly influence the final result, so the main cause of the 
experiment’s failure may be inaccurate computation of the orientation field and 
density map. It also implies that a representation method that uses only an 
orientation field and a density map is not adequate for recognition tasks. One 
simple way to reduce the computational errors is to use more constraints, i.e., more 
features in our task, such as minutiae points. 
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14.6. Summary  
Fingerprint recognition applications seek a complete but compact representation 

of fingerprints. In this chapter, we introduced  issues related to the  graphical 
representation of fingerprints and some approaches to these issues. Since 
orientation field is an important feature in the description of the global appearance 
of fingerprints, we have focused on  orientation field models and have described 
methods based on them for generating synthetic fingerprint images. Finally, we 
discussed the reconstruction of a noise-less fingerprint image from an original 
fingerprint image. We summarise our conclusions as follows: 

 Conventional fingerprint recognition algorithms rely on minutiae-based  
representations of fingerprints. As a minutiae-based representation uses only 
a part of the discriminatory information present in fingerprints, further 
exploration of additional complementary representations of fingerprints for 
automatic matching is needed.  

 An orientation field can be well represented by either a rational complex 
model or a combination model. In the rational complex model, the orientation 
field of fingerprints is expressed as the argument of a rational complex 
function. In the combination model, it is represented by bivariate 
polynomials globally and is rectified locally by several point-charge models. 
As a comparison, the rational complex model is more compact while the 
combination model approximates more effectively. Both of these models 
make it feasible to utilize the orientation information into the matching stage. 

 Using a feature set consisting of an orientation field and a density map, we 
can synthesize a new fingerprint, which shows that this feature set constitutes 
a complete fingerprint representation. However, in order to obtain a robust 
representation for real applications, minutiae information is still very helpful, 
so for effective fingerprint matching it may be desirable to use features of 
minutiae, orientation fields, and density maps 
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