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Abstract

Photometric methods in computer vision require cal-
ibration of the camera’s radiometric response, and pre-
vious works have addressed this problem using multiple
registered images captured under different camera expo-
sure settings. In many instances, such an image set is
not available, so we propose a method that performs ra-
diometric calibration from only a single image, based on
measured RGB distributions at color edges. This tech-
nique automatically selects appropriate edge informa-
tion for processing, and employs a Bayesian approach
to compute the calibration. Extensive experimentation
has shown that accurate calibration results can be ob-
tained using only a single input image.

1 Introduction

Many computer vision algorithms implicitly assume
that image intensities are linearly related to scene ra-
diance. This linear relationship is needed for bright-
ness values to have some physical meaning and for im-
ages from different cameras to be accurately compared.
Most cameras, though, are designed to have a non-
linear mapping from scene radiance to image intensity,
to emulate the characteristics of film and to account
for non-linearities in display systems. To obtain scene
radiance information from images, it therefore becomes
necessary to transform the non-linear mapping into a
linear one by calibrating the radiometric response of
the camera system.

Several previous works have addressed this prob-
lem, most of which require as input a set of regis-
tered images taken with varying camera exposures.
For known exposure ratios among the images, meth-
ods have been presented to solve for parametric [6] and
smooth non-parametric [1] inverse response functions.
Starting with a rough estimate of the exposure ratio,
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Mitsunaga and Nayar [7] iteratively compute a polyno-
mial inverse response function and refine estimates of
exposure ratios. Iterative methods have also been pro-
posed by Tsin et al. [9] and Mann [5] for estimating
non-parametric inverse response functions. Grossberg
and Nayar [4] presented a camera response model de-
rived from PCA of a camera response data set, and
in [3] they avoid the need for spatial correspondences
among images by employing a histogram analysis to
relate intensity values between two images of different
exposure. Instead of varying the exposures among dif-
ferent images, Nayar and Mitsunaga [8] obtain various
exposures at the expense of spatial resolution by using
an image filter with spatially varying transmittance.

Accurate calibration results can be obtained using
these prior techniques; however, they are based on cer-
tain limiting requirements, such as having multiple im-
ages under different exposures or using a special fil-
ter. Although this calibration data could be captured if
the camera were in hand, often images to be processed
by vision algorithms have been captured by unknown
cameras or by cameras that are not readily available.
Such scenarios include applications for personal pho-
tographs, and analysis of images on the web. To re-
cover the scene radiances in such images, a method
is needed for performing radiometric calibration from
only a single input image taken with unknown camera
settings. Though a technique for gamma correction
of a single input image has previously been proposed
[2], the response function of a camera can differ signif-
icantly from a gamma curve.

A mapping from image intensity to scene radiance
can be determined by fitting a function to correspond-
ing values of intensity and radiance. For intensity val-
ues in measured images, however, their corresponding
radiance values are generally unknown. Previous meth-
ods all deal with this problem by utilizing different
camera exposures which modulate the scene radiance
captured at the CCD array. For a pair of images, the
ratio of captured radiance at corresponding pixels is
equal to the exposure ratio between the two images.
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With a set of corresponding points in the image pair,
a camera response function can be fit to their intensity
values and radiance ratios. Since the function is fit
to radiance ratios instead of absolute radiance values,
it maps image intensities to values linearly related to
scene radiance.

In the case of a single input image, correspondences
and variable exposures are not available to determine
ratios of captured radiance. Furthermore, radiance
ratios among pixels in a single image cannot be es-
tablished reliably because variations in radiance re-
sult from a number of scene factors such as geome-
try, lighting environment and bi-directional reflectance
functions.

To address the problem of single-image calibra-
tion, we present an approach fundamentally different
from previous methods in that no radiance information
needs to be recovered. Instead, our method obtains
calibration information from how a non-linear radio-
metric response affects the measured image, in partic-
ular its edge color distributions. In a local edge re-
gion, the captured radiance colors form a linear distri-
bution in RGB space because of linear color blending
at edge pixels. The edge colors in the measured im-
age, however, form a non-linear distribution because of
the non-linear mapping from captured radiance to in-
tensity in camera response functions. We show in this
paper that the inverse response function that maps im-
age intensity to captured radiance can be estimated as
the function that maps the non-linear color distribu-
tions of edge regions into linear distributions. With
this approach, multiple images, correspondences and
variable exposures are not needed. In our extensive
experimentation, we have found that this calibration
technique produces accurate results using only a single
input image.

2 Background

Before describing our algorithm, we review some
background on radiometric calibration. The radiomet-
ric response function f of a camera system relates cap-
tured scene radiance I, also known as image irradiance,
to its measured intensity M in the image:

M = f(I). (1)

Since photometric methods should operate on image
irradiance values rather than image intensity measure-
ments, radiometric calibration methods solve directly
for the inverse response function g = f−1. Response
functions f are invertible since sensor output increases
monotonically with respect to I.

Computation of the inverse response function in pre-
vious works has been based on the relationship

g(mA) = kg(mB) (2)

where mA denotes measured image intensities in image
A, mB represents intensities of corresponding points in
image B, and k denotes the exposure ratio between
A and B. Evident in this equation is the need to
capture multiple registered images with different ex-
posure settings. In [3], registration is circumvented by
forming correspondences through histogram equaliza-
tion, assuming that the scene radiance distribution has
not changed significantly from one image to the next.
Prior methods that do not assume known exposure ra-
tios iteratively solve for k and g in their calibration
processes.

A major obstacle in computing inverse response
functions arises from exponential ambiguity, or u-
ambiguity. From Eq. (2), it can be seen that if g and
k are solutions for a set of images, then gu and ku can
be valid solutions as well:

gu(mA) = kugu(mB).

To deal with this ambiguity, prior methods require a
rough initial estimate of k and assumptions on the
structure of the radiometric model, as detailed in [3].

It is generally assumed that the sensor response does
not change over the image grid, such as from vignetting
or fixed pattern noise that results from CCD manufac-
turing variances. The response functions of the RGB
channels, though, can differ from one another.

3 Edge Color Distributions

For single image input, the relationship of Eq. (2)
cannot be used for calibration. Our method instead is
based on the relationship between the inverse response
function and the edge color distributions in a measured
image. In this section, we describe the effects of sen-
sor nonlinearities on edge color distributions and how
these distributions provide information for radiometric
calibration.

3.1 Color Sensing

Images are formed on a CCD sensor array that
records radiance from the scene. Because the array
is limited in resolution, each array element x images a
solid angle of the scene, and we denote the set of image
plane points within an array element as S(x).

For color imaging, each array element is coupled
with a color filter k, typically red, green or blue. The
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Figure 1. Non-linear distribution of measured colors in edge regions. (a) The first two columns of pixels image only a
color region with radiance R1, and the last column images a color region with radiance R2. The third column contains
pixels that image both regions. (b) The irradiances of pixels in the first two columns map to the same point I1 in
RGB color space, while the irradiances in the last column map to a single color point I2. The colors of the blended
pixels lie on a line defined by I1 and I2. (c) A non-linear camera response f warps the image irradiance colors into a
non-linear distribution. (Figures best viewed in color)

image irradiance I for color k at x depends on the sen-
sitivity qk of the element-filter pair and the incoming
scene radiances R incident upon image plane points p
in S(x):

I(x, k) =
∫

λk

∫
p∈S(x)

R(p, λ)qk(λ) dp dλ (3)

where λk denotes the range of transmitted light wave-
lengths by color filter k. Although just a single color fil-
ter is paired with each array element, it is typically as-
sumed that all three R, G, B colors are accurately mea-
sured with qR, qG, qB filter sensitivities at each pixel,
because of effective color value interpolation, or demo-
saicing, in the camera.

3.2 Nonlinearity of Edge Colors

In analyzing an edge color distribution, we consider
an image patch P that contains two regions each having
distinct but uniform colors, as illustrated in Fig. 1(a).
Because of the limited spatial resolution of the image
array, the image plane area S(x) of an edge pixel will
generally image portions of both regions. For an edge
pixel x divided into regions S1(x) and S2(x) with re-
spective scene radiances R1(λ) and R2(λ), the overall
radiance incident at x can be expressed as∫

p∈S(x)

R(p, λ)dp =
∫

p∈S1(x)

R1(λ)dp +
∫

p∈S2(x)

R2(λ)dp

= αR1(λ) + (1 − α)R2(λ) (4)

where α =
∫

p∈S1(x)
dp and S(x) is of unit area.

Substituting (4) and (3) into (1) gives the measured
color of x as

m(x, k) = f

[
α

∫
λk

R1(λ)qk(λ)dλ +(1−α)
∫

λk

R2(λ)qk(λ)dλ

]

= f [αI1(x, k) + (1 − α)I2(x, k)] (5)

If there were a linear relationship between image ir-
radiance I and measured color f(I), then the following
property would hold:

f [αI1 + (1 − α)I2] = αf(I1) + (1 − α)f(I2)

meaning that the measured colors of the blended pixels
lie on a line in RGB color space between the measured
region colors f(I1) and f(I2). Since f is typically non-
linear, a plot of the measured edge colors forms a curve
rather than a line, as illustrated in Fig. 1(c). The non-
linearity of a measured color edge distribution provides
information for computing the inverse camera response.

3.3 Transformation to Linear Distributions

The inverse response function should transform
measured image intensity into values linearly related
to scene radiance, and therefore linearly related to im-
age irradiance. Since image irradiance at edge regions
form linear distributions as exemplified in Fig. 1(b), the
inverse response function should transform non-linear
edge color distributions into linear distributions. For
an edge patch with measured region colors M1 and M2,
the inverse response function g should map the mea-
sured color Mp of each point p in the patch to a line

R

Measured ColorScene Radiance Image Irradiance
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Figure 2. Transformation of non-linear distributions
to linear distributions by the inverse response func-
tion g. (a) Color space, before and after transforma-
tion. (b) Plot of measured red color vs. irradiance,
before and after transformation

defined by g(M1) and g(M2), as illustrated in Fig. 2(a).
A function g satisfies this property if the distance from
g(Mp) to line g(M1)g(M2) is zero, formulated as

|[g(M1) − g(M2)] × [g(Mp) − g(M2)]|
|g(M1) − g(M2)| = 0 (6)

where × is the cross product operation between two
vectors.

An inverse function g computed with respect to a
single edge patch with region colors M1 = (R1, G1, B1)
and M2 = (R2, G2, B2) will transform measured red
colors in the range delimited by R1 and R2, measured
green colors in the range delimited by G1 and G2, and
measured blue colors in the range delimited by B1 and
B2 to values linearly related to irradiance. To more
fully cover the ranges of measured R, G and B colors,
g is computed with respect to all obtained edge patches
in the image.

For a given image, we collect all obtained edge color
triples into an observation set Ω = {< M1, M2, Mp >},
and define the total distance as

D(g; Ω) =
∑
Ω

|[g(M1) − g(M2)] × [g(M1) − g(Mp)]|
|g(M1) − g(M2)| .

(7)
The desired inverse response function g is the one that
gives the smallest total distance.

The linear relationship between estimated irradiance
given by g and absolute irradiance will have unknown
scale factors γ = [γR, γG, γB]T for each color channel,
such that g(M) = γI by element-wise multiplication.

Figure 3. Edge selection for observation set. (a)
Input image; (b) Automatically identified patches on
the edge image; (c) Closeups of selected patches

To deal with difference in scalings, we normalize both
the domain and co-domain of the function g so that it
satisfies g(0) = 0 and g(1) = 1, as done in [4].

4 Formation of Observation Set

The set of edge color triples Ω is collected from fixed-
size (15 × 15) image windows containing monotonic
color edges between uniform region colors. Our method
selects non-overlapping candidate windows centered on
a Canny-detected edge whose path divides the window
into exactly two regions.

To determine whether a window contains valid edge
colors for inclusion into the observation set, some color
analysis is performed. The edge path is dilated by
three pixels, and with the two partitioned non-edge
regions S1 and S2, the mean color and the color vari-
ance with respect to Euclidean RGB distance is com-
puted. If both regions have color variances below a
specified threshold, then the regions are considered uni-
form. The mean colors must lie at least a specified
distance from each other, since image noise could oth-
erwise dominate the distance computation of Eq. (6).
Additionally, because of the monotonicity of response
functions, the R, G and B edge colors must lie within
the range delimited by the two region colors. This re-
quirement excludes edges that exhibit ringing. For each
valid edge window, the color triple for each edge pixel
is added to the observation set.

Fig. 3 exemplifies the selection of valid edge windows
for a given image. The color variance threshold is fixed
at a low value in our implementation to ensure the
quality of the edge triples.

5 Bayesian Estimation

While the inverse response function could be esti-
mated by minimizing Eq. (7) under the physical con-
straints that the function be smooth and monotonic,
the function could be more accurately determined by
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utilizing prior information on real-world camera re-
sponses, presented in [4]. This prior data helps to in-
terpolate and extrapolate the inverse response curve
over intervals of incomplete color data, and its PCA
representation facilitates computation by providing a
concise descriptor for g. Using the PCA model of cam-
era responses presented in [4], we represent the inverse
response function g by

g = g0 + c H (8)

where g0 = [gR0, gG0, gB0]T is the mean inverse re-
sponse, and H is a matrix whose columns are composed
of the first N = 5 eigenvectors. c = [cR, cG, cB]T is a
coefficient vector in R3×N that represents an inverse
response function g = [gR, gG, gB]T . With this prior
information, our technique computes a MAP solution
of the inverse response function.

5.1 Prior Model

We model the prior p(g) of the inverse response
function from the DoRF database compiled by Gross-
berg and Nayar [4], which contains 201 inverse response
functions from various digital cameras and films. From
this set of inverse responses, we form the prior as a
Gaussian mixture model:

p(g) =
K∑

i=1

αiN (g; µi, Σi). (9)

In our implementation, we empirically use five kernels
(K = 5) obtained using the EM algorithm.

5.2 Likelihood Function

The inverse response function g should yield a low
total distance as expressed in Eq. (7), so we model the
likelihood p(Ω|g) by incorporating this distance mea-
sure into an exponential distribution:

p(Ω|g) =
1
Z

exp(−λD(g; Ω)) (10)

where λ is set empirically to 104 and Z is a normaliza-
tion constant.

5.3 Solution Method

After modelling the prior p(g) and the likelihood
p(Ω|g) by Eq. (9) and Eq. (10) respectively, we can
formulate the whole problem in a Bayesian framework.
Given an input image M , we determine the observation

set Ω. The optimal response function g∗ is then defined
as

g∗ = argmax p(g|Ω) = arg max p(Ω|g)p(g),

which is the MAP solution of the problem. Taking the
log of the above equation, g∗ also can be written as

g∗ = argminE(g) = arg minλD(g; Ω)− log p(g), (11)

where g∗ can be viewed as the optimal solution of the
objective function E(g).

The optimization is computed by the Levenberg-
Marquardt method, with the coefficients of g initialized
to zero. Since g is represented by principal components
in Eq. (8), the first and second derivatives of g(c) are
approximated by the first and second differences with a
small δc. After the optimization algorithm converges,
the result is refined sequentially in each dimension us-
ing a greedy local search.

6 Results

We applied our calibration technique on single-
image input captured from three kinds of cameras: a
Kodak DCS 330, a Canon PowerShot G5 and a Nikon
D100. These cameras were not included in the response
database used to form the prior model. Examples of
calibration results for the respective cameras are shown
in Fig. 5. Due to space limitations, only two images and
one color response function is shown for each camera.
For comparison, we also recovered the functions using
the methods of Debevec and Malik [1], Mitsunaga and
Nayar [7], and by imaging a Macbeth ColorChecker
which consists of measured reflectance patches. The
recovered functions of our method are reasonably close
to the others, even though our response is determined
from a single image while the methods of [1] and [7]
utilized a set of 12 registered images captured with dif-
ferent exposure settings.

Table 1 summarizes the performance of our method
on a set of 50 images per camera in terms of RMS
error and disparity with respect to the average inverse
response curve among [1], [7] and the ColorChecker. In
[4], RMS error and disparity were computed for their
calibration system, and our method yields roughly sim-
ilar performance.

For a couple images, the measured R, G and B
ranges for each edge patch are shown in Fig. 4. When
the measured color data is incomplete, there is a ques-
tion of whether the correct inverse response can be
solved, and whether all the color values in the image
will map to a consistent linear relationship with irra-
diance. Even when the observed edge colors are rel-
atively limited as in Fig. 4(e-h), accurate calibration
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Table 1. Average RMSE and Disparity of Inverse Response Curves
Red Green Blue

RMSE Disparity RMSE Disparity RMSE Disparity
KODAK DCS330 1.95E-02 4.41E-02 1.02E-02 3.28E-02 2.51E-02 4.73E-02

CANON G5 1.56E-02 2.83E-02 5.39E-03 9.60E-03 1.33E-02 2.46E-02
NIKON D100 2.17E-02 3.84E-02 1.04E-02 3.20E-02 2.91E-02 4.15E-02

Figure 6. Images of the same scene taken by the
same camera with different exposure, of ratio 0.5.
Image matching with radiometric calibration leads to
smaller match error than without calibration.

can be determined primarily due to constraints pro-
vided by the prior model of camera responses compiled
by Grossberg and Nayar [4].

Radiometric calibration is important not only for
photometric methods, but also for many techniques
that involve more than one camera. For example,
two different uncalibrated cameras capturing the same
scene will have images with color differences, because of
their different non-linear sensor responses. The match
quality between the two images would be lower than
if the cameras were calibrated. To illustrate this prob-
lem, we performed a similar experiment, where we cap-
tured two images of the same scene using the same
camera but at different exposures.

Fig. 6 displays two images taken with a Kodak DCS
330, where the exposure ratio is 0.5. We use only the
first image to compute the inverse response function.
For intensity normalization, we simply compute the av-
erage R + G+ B intensity in each image, and use their
ratio to scale the second image. All color values are
then normalized to the range [0, 1]. Without calibra-
tion, the mean-squared RGB matching error between
the two images is 0.0830. With calibration, the error
drops to 0.0121. It can be seen from this example that
when one camera is used for modeling and different one
is used for testing in applications such as recognition,
radiometric calibration can lead to greater accuracy.

7 Discussion

Our calibration method achieves higher accuracy
when the measured edge colors cover a broader range

of brightness values in each color channel. Although
the dependence on edges may limit the amount of data
obtainable in an image, we have found that blended col-
ors within a given edge patch often encompass broad
intervals of R, G and B, as exhibited in Fig. 4. By ex-
amination of an image’s edge color intervals, the need
for additional data can be inferred.

For a single image, at least a couple methods could
potentially be used to obtain additional color informa-
tion. One is to more aggressively search for edge data.
Our current method for edge patch selection is quite
conservative. If augmentation of the RGB ranges is
needed, variation in window sizes and incrementally
less restrictive thresholds could be employed to pro-
gressively acquire more edge windows. Another source
of information arises from the Bayer pattern, which
is the arrangement of color filters on the CCD array.
Since an array element can be paired with only a single
color filter, the two other colors that it does not mea-
sure must be demosaicked from the neighboring pixels.
Recovery of the demosaicing method would uncover ad-
ditional color relationships among pixels throughout
the image which could be used for radiometric calibra-
tion. We plan to examine both of these directions in
future work.

The amount of edge color data can also be increased
by using additional input images captured by the same
camera, even if the images are not registered or other-
wise corresponded, because edge windows from the im-
ages can in principle be used together for calibration.
This property is especially useful for applications on
personal photographs, which generally consist of many
unregistered images taken from the same camera.

For an image that exhibits a rather limited range
of colors, the estimated inverse response function may
not be very accurate, but it will nevertheless transform
the measured colors to be linearly related to irradiance.
Although colors outside this range may not transform
to this linear relationship, the inaccurate inverse re-
sponse function can still be useful, because a linear
relationship for the observed RGB colors is all that
vision algorithms generally need.

Besides coverage of two region colors by a pixel,
there exist other possible causes of color blending at
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Figure 4. Color range of edge patches in images. (a,e) Input images. (b-d) R, G and B ranges of edge patches in (a).
(f-h) R, G and B ranges of edge patches in (e). The vertical axis indexes individual patches in an image.

edges. Defocus and other convolution-type operators
convolve each of the R, G and B channels in the same
way, resulting in a linear distribution of image irra-
diance colors that can be exploited by our technique.
In contrast, non-linearities of image irradiance colors
at edges can result from image artifacts such as chro-
matic aberration, which can produce fringes of pur-
ple at some edges. Local windows with such artifacts,
however, are generally rejected for processing by our
algorithm, based on the edge patch selection criteria
described in Section 4.

Previous calibration methods are faced with the
problem of exponential ambiguity in the inverse re-
sponse function. For a related ambiguity to arise in our
approach, multiple inverse response functions would
have to give a same minimum energy E(g) in Eq. (11).
Given the form of the prior and likelihood function, this
occurs only in limited instances such as when both the
measured color distribution lies along the R = G = B
line and the RGB sensor responses are identical. Since
this ambiguity is uncommon and is very unlikely to ex-
ist among all the edge windows of an image, it is not a
major consideration in this work.

Our proposed method demonstrates the effective-
ness of color edge analysis in radiometric calibration,
allowing calibration using only a single image or a set
of unregistered images. This technique exhibits good
performance on a wide range of single-image input, and
promising directions exist for increasing the amount
of collected color data. Without need for scene radi-
ance or camera information, this single-image approach

widens the applicability of radiometric calibration.
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Figure 5. Inverse camera response functions for (a,d) Kodak DCS 330 in the red channel, (b,e) Canon G5 in the
green channel, (c,f) Nikon D100 in the blue channel.
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